雷电流幅值概率分布特征及累积概率分段修订
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Probability Distribution for Lightning Peak Current and Segment Revision for Cumulative Probability
  • 作者:王学良 ; 张科杰 ; 余田野 ; 汪姿荷
  • 英文作者:Wang Xueliang;Zhang Kejie;Yu Tianye;Wang Zihe;Lightning Protection Center of Hubei Province;
  • 关键词:雷电流 ; 幅值 ; 累计概率 ; 分段修订
  • 英文关键词:lightning current;;peak current;;cumulative probability;;segment revision
  • 中文刊名:QXKJ
  • 英文刊名:Meteorological Science and Technology
  • 机构:湖北省防雷中心;
  • 出版日期:2016-12-15
  • 出版单位:气象科技
  • 年:2016
  • 期:v.44;No.259
  • 基金:湖北省雷电灾害防御科研专项(FL-Z-201401)资助
  • 语种:中文;
  • 页:QXKJ201606030
  • 页数:6
  • CN:06
  • ISSN:11-2374/P
  • 分类号:187-192
摘要
为了研究雷电流幅值概率分布特性及雷电流幅值累积概率曲线拟合效果,以满足防雷工程设计和雷击风险评估工作需要,根据湖北省2007—2013年雷电定位系统(Lightning Location System,LLS)监测的雷电流幅值资料,统计分析了雷电流幅值累积概率和密度分布特征。结果表明:正闪和负闪电雷电流幅值累积概率分布差异较大,负闪电雷电流幅值累积概率分布比正闪电更集中,负闪和总闪电的雷电流幅值累积概率分布曲线基本相同;雷电流幅值强度大部分集中在10~50kA。根据IEEE推荐的雷电流幅值累积概率分布表达式,拟合了不同极性的雷电流幅值累积概率分布公式。雷电流幅值小于110kA时,采用IEEE拟合公式计算的雷电流幅值累积概率与实测值间的相对误差较小;雷电流幅值大于110kA时,计算值与实测值间的相对误差随雷电流幅值的增加而增大。采用该文给出的分段修订公式,计算在110kA以上的雷电流幅值累积概率与实测值间的相对误差在2%以内。由IEEE推荐表达式拟合雷电流幅值累积概率分布和概率密度分布时,负闪和总闪电雷电流幅值累积概率分布拟合效果明显比正闪电好,其原因可能与正闪电分布特性有关。
        In order to study the probability distribution characteristics of lightning peak current and the fitting effectiveness of cumulative probability for peak current,and the demands of lightning protection engineering design and lightning risk assessment,this article utilizes the peak current data observed by the LLS(Lightning Location System)from 2007 to 2013 to analyze the distribution characteristics of probability and density for peak current.The results show that there is a big difference in the cumulative probabilities for different polar peak currents;the distribution of negative lightning is more concentrated than that of positive lightning;the distribution curve of peak current cumulative probability for negative lightning is basically the same with the total one;and the peak currents of lightning are concentrated mostly in 10 to 50 kA.According to the distribution expression suggested by IEEE for cumulative probability of peak currents,this article fits the distribution expression of cumulative probability for different polar peak currents.The statistical analysis shows that when the peak current is less than 110 kA,the relative error between fitting cumulative probability calculated by the fitting expression of IEEE and the actual one is small,but when the peak current is above 110 kA,the error increases with the peak current.According to the segment revision expression given by this article,with the peak current being above 110 kA,the error between calculated cumulative probability and the actual one is less than 2%.When use the expression suggested by IEEE to fit the cumulative probability and density of peak currents,the fitting effectiveness for negative lightning and total one is better than the positive one.The reason seems to be connected with the distribution characteristics of positive lightning.
引文
[1]郄秀书,张其林,袁铁,等.雷电物理学[M].北京:科学出版社,2013.
    [2]许小峰.国家雷电监测网的建设与技术分析[J].中国工程科学,2002,4(5):7-13.
    [3]付茂金,阮小飞,王州龙,等.高速铁路通信信号综合防雷技术[M].北京:科学出版社,2014:56-61.
    [4]杨帅,邹建明,喻剑辉,等.输电线路与引雷塔雷电监测与雷电流波形分析[J].高电压技术,2013,39(6):1536-1540.
    [5]陈家宏,童雪芳,谷山强,等.雷电定位系统测量的雷电流幅值分布特征[J].高电压技术,2008,34(9):1893-1897.
    [6]吴璞三.雷电观测综述[J].华北电力技术,1983(4):1-6.
    [7]何金良,曾荣.配电线路雷电防护[M].北京:清华大学出版社,2013:1-47.
    [8]孙萍,郑庆均,吴璞三,等.220kV新杭线Ⅰ回路27年雷电流幅值实测结果的技术分析[J].中国电力,2006(7):74-76.
    [9]王巨丰,齐冲,车诒颖,等.雷电流最大陡度及幅值的频率分布[J].中国电机工程学报,2007,27(3):106-110.
    [10]Orville R E,Huffines G R.Cloud-to-Ground Lightning in the United states:NLDN Results in the First Decade,1989—98[J].Monthly Weather Review,2001,129(5):1179-1193.
    [11]Grant I S,Anderson J G,Hileman A R,et al.A simplified method for estimating lightning performance of transmission lines[J].IEEE Transaction on Power Apparatus and Systems,1985,104(4):919-932.
    [12]Takami J,Okabe S.Observational results of lightning current on transmission towers[J].IEEE Transactions on Power Delivery,2007,22(1):547-556.
    [13]IEEE Std 1243-1997IEEE Guide for Improving the Lightning Performance of Transmission Lines[S].New York IEEE Inc.,1997:8.
    [14]李家启,王劲松,申双和,等.基于ADTD系统监测的雷电流幅值累积概率特征分析[J].气象,2011,37(2):226-231.
    [15]姜勇,李鹏.云南地区雷电流幅值初步探究[J].电瓷避雷器,2014(6):61-71.
    [16]DL/T 620-1997交流电气装置的过电压保护和绝缘配合[S].北京:中国电力出版社,1997:36-45.
    [17]李瑞芳,吴广宁,曹晓斌,等.雷电流幅值概率计算公式[J].电工技术学报,2011,26(4):161-167.
    [18]冯志伟,肖稳安,马金福,等.基于地闪数据的雷电流幅值累积频率公式探讨[J].气象科技,2012,40(1):137-140.
    [19]冯鹤,扈勇.架空线路年平均雷电闪击频数计算方法探析[J].气象科技,2015,43(5):973-977.
    [20]王学良,张科杰,张义军,等.雷电定位系统与人工观测雷暴日数统计比较[J].应用气象学报,2014,25(6):741-750.
    [21]秦建峰,刘梦雨,吴昊.ADTD雷电探测系统典型故障分析[J].气象科技,2012,40(2):180-184.
    [22]田芳,田芳,肖稳安,等.闪电定位观测结果的修订分析[J].华东电力,2008,36(6):38-42.
    [23]曾庆峰,张其林,赖鑫,等.深圳市闪电定位资料误差分析及其优化[J].气象科技,2015,43(3):530-536.
    [24]中国科学院空间科学与应用研究中心.ADTD雷电探测仪用户手册[R].北京:中国科学院,2004.
    [25]孙萍.220kV新杭线雷电流幅值实测结果的统计分析[J].中国电力,2000,33(3):72-75.
    [26]陆国俊,熊俊,陈家宏,等.广州地域1999—2008年地闪密度图及雷电参数分析[J].高电压技术,2009,36(12):2930-2936.
    [27]童雪芳,陈家宏,陈钦柱.海南电网雷电参数特征及应用研究[J].电磁避雷器,2015(1):134-138.
    [28]赵伟,童杭伟,张俊,等.浙江省雷电时空分布特征及影响因素分析[J].电网技术,2013,37(5):1425-1431.
    [29]刘岩,王振会,康凤琴,等.浙江和甘肃两地区地闪特征的初步对比分析[J].高原气象,2009,28(3):669-674.
    [30]王秉均.数理统计在高电压技术中的应用[M].北京:水利电力出版社,1990:1-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700