不同氮肥水平下玉米与龙葵竞争吸收镉的差异性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Difference of the Cadmium uptake by competition between Zea mays L.and Solanum nigrum L. under different nitrogen fertilizer levels
  • 作者:霍文敏 ; 邹茸 ; 王丽 ; 迟克宇 ; 范洪黎
  • 英文作者:HUO Wen-min;ZOU Rong;WANG Li;CHI Ke-yu;FAN Hong-li;School of Land Science and Technology, China University of Geosciences (Beijing);Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture;Beijing Construction Engineering Group Environmental Remediation CO.,LTD.;
  • 关键词:氮肥用量 ; 镉吸收 ; 竞争模式 ; 龙葵
  • 英文关键词:nitrogen fertilizer application rate;;Cd uptake;;competition mode;;Solanum nigrum L.
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:中国地质大学(北京)土地科学技术学院;中国农业科学院农业资源与农业区划研究所/农业部植物营养与肥料重点开放实验室;北京建工环境修复股份有限公司;
  • 出版日期:2018-07-25
  • 出版单位:植物营养与肥料学报
  • 年:2018
  • 期:v.24;No.121
  • 基金:国家重点研发计划项目(2016YFD0800806);; 国家自然科学基金项目(31372134)资助
  • 语种:中文;
  • 页:ZWYF201804024
  • 页数:11
  • CN:04
  • ISSN:11-3996/S
  • 分类号:233-243
摘要
【目的】研究不同氮肥用量处理对玉米镉(Cd)积累的影响及其生理响应机制,为今后利用玉米–龙葵间作模式进行植物修复时合理使用氮肥、减少修复成本及环境污染奠定基础。【方法】以Cd超积累植物龙葵(Solanum nigrum L.)与玉米为供试材料,取Cd污染浓度为2.79 mg/kg的供试土壤,采用温室盆栽试验,设置玉米单作及玉米、龙葵竞争模式下3个不同氮肥用量处理,分别为不施肥、N 0.1 g/kg、N 0.2 g/kg,研究施氮量对玉米、龙葵的生长以及各器官吸收积累Cd的影响。【结果】施用氮肥能提高玉米和龙葵各器官的生物量,且随着施氮量的增加龙葵和玉米的生物量均显著性增加,高施氮量处理下龙葵根、茎、叶、籽粒生物量增量最大,分别增加了47.2%、51.0%、25.3%、63.2%;玉米根、茎、叶、籽粒生物量分别增加了35.5%、17.0%、76.2%、112%。不同氮肥用量处理下,龙葵各器官中Cd含量显著性增加,同时与其竞争的玉米各器官Cd含量显著性下降。玉米与龙葵竞争模式下高施氮量处理的龙葵根、茎、叶、籽粒中Cd含量分别增加了23.2%、41.2%、12.3%、45.3%;玉米根、茎、叶、籽粒中Cd含量分别下降了49.2%、38.0%、42.8%、19.5%。高施氮量处理下,龙葵各器官Cd累积量显著性增加,根、茎、叶、籽粒中Cd累积量分别增加85.6%、88.4%、131%、159%;同时玉米各器官Cd累积量显著性降低,茎、叶、籽粒中Cd累积量分别下降12.2%、34.8%、79.5%。高施氮量处理下,玉米与龙葵竞争模式下龙葵富集系数增加113%,转运系数增加15.1%;玉米的富集系数降低25.7%,转运系数降低15.2%。玉米与龙葵竞争模式下,随着施氮量的增加,龙葵对Cd的吸收转运能力增强,玉米对Cd的吸收转运能力受到抑制。因此,Cd污染土壤中,通过玉米–龙葵间作处理并适当提高施氮量,能够促进龙葵的生长和地上部Cd的积累能力。这一研究结果旨在为修复污染土壤,提高修复效率以及保证农产品质量安全提供理论依据。【结论】玉米与龙葵竞争模式下,0.2 g/kg的施氮量能够促进龙葵对Cd的吸收转运,降低Cd在玉米各器官的累积,并提高Cd污染土壤的修复效率,达到边生产边修复的目的。
        【Objectives】Investigate the effects of different nitrogen fertilizer application rates on cadmium(Cd)accumulation in maize and its physiological response mechanism. This research aims to lay the foundation for the reasonable use of nitrogen fertilizer, reduce the cost of restoration and environmental pollution in future plant remediation by using Zea mays L.(maize) and Solanum nigrum L. intercropping system.【Methods】The Cdhyperaccumulator S. nigrum and maize were used as test materilas, soil with Cd concentration of 2.79 mg/kg, the pot experiment was conducted to study the three treatments of different nitrogen fertilizers rates, the treatments were monoculture and non-fertilizer, N 0.1 g/kg, and N 0.2 g/kg in competition mode, and study the effects of the nitrogen fertilizer application rate on the growth and Cd accumulation in various organs of maize and S. nigrum.【Results】The research showed that the application of nitrogen fertilizer could increase the biomass of various organs of maize and S. nigrum, the biomass of S. nigrum and maize increased significantly with the increase of nitrogen application rate. The biomass increment of the root, stem, leaf and grain was the largest in the high application rate of nitrogen fertilizer, which increased by 47.2%, 51.0%, 25.3% and 63.2% for S.nigrum,respectively. The biomass of root, stem, leaf and grain of maize increased by 35.5%, 17.0%, 76.2% and 112%,respectively. Under different application rates of nitrogen fertilizer treatments, the concentration of Cd in the organs of S. nigrum increased significantly, while the concentration of Cd in the organs of maize was decreased significantly. Under maize and S. nigrum competition mode, with the high application rate of nitrogen fertilizer treatment, the concentration of Cd in root, stem, leaf and grain of S. nigrum increased by 23.2%, 41.2%, 12.3%and 45.3%, respectively. The Cd concentration in root, stem, leaf and grain of maize decreased by 49.2%, 38.0%,42.8% and 19.5%, respectively. Under high application rate of nitrogen fertilizer treatment, Cd accumulation in organs of S. nigrum increased significantly, and Cd accumulation in root, stem, leaf and grain increased by 85.6%,88.4%, 131% and 159%, respectively; the Cd accumulation in organs of maize was significantly reduced, and the Cd accumulation in stem, leaf and grain decreased by 12.2%, 34.8% and 79.5%, respectively. Under high application rate of nitrogen fertilizer, the enrichment coefficient of S. nigrum increased by 113% and the translocation coefficient increased by 15.1% under the competition mode between maize and S. nigrum; the enrichment coefficient of maize decreased by 25.7%, and the transport coefficient decreased by 15.2%. Under the competition mode between maize and S. nigrum, as the amount of nitrogen fertilizer increased, the Cd uptake and translocation of S. nigrum increased, and the Cd absorption and transportion of maize would be inhibited.Therefore, in the Cd contaminated soil, through the maize and S. nigrum intercropping treatment and the appropriate application of nitrogen fertilizer, the growth of S. nigrum and the Cd accumulation of shoots could be increased. The results of this study were intended to provide a theoretical basis for remediation of contaminated soil, improvement of remediation efficiency, and assurance of quality and safety of agricultural products.【Conclusions】Under maize and S. nigrum competition mode, the high nitrogen application rate of N 0.2 g/kg could promote the uptake and translocation of Cd by hyperaccumulator S. nigrum, reduce the accumulation of Cd in various organs of maize, and improve the remediation efficiency of Cd contaminated soil, thus achieve the goal of the production and remediation at the same time.
引文
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[EB/OL].http://www.gov.cn,2014-04-17.Ministry of Environmental Protection,Ministry of Land and Resources.National survey of soil pollution bulletin[EB/OL].http://www.gov.cn,2014-04-17.
    [2]居述云,汪洁,吴龙华,等.重金属污染土壤的伴矿景天/小麦-茄子间作和轮作修复[J].生态学杂志,2015,34(8):2181–2186.Ju S Y,Wang J,Wu L H,et al.Phytoremediation of heavy metal contaminated soils by intercropping with Sedum plumbizincicola and Triticum aestivum and rotation with Solanum melongena[J].Chinese Journal of Ecology,2015,34(8):2181–2186.
    [3]Cheng M M,Wang A A,Tang C X.Ammonium-based fertilizers enhanced Cd accumulation in Carpobrotus rossii grown in two soils differing in p H[J].Chemosphere,2017,188:689–696.
    [4]谭建波,湛方栋,刘宁宁等.续断菊与蚕豆间作下土壤部分化学特征与Cd形态分布状况研究[J].农业环境科学学报,2016,35(1):53–60.Tan J B,Zhan F D,Liu N N,et al.Soil chemical properties and Cd form distribution in Vicia foba and Sonchus asper intercropping system[J].Journal of Agro-Environment Science,2016,35(1):53–60.
    [5]Sidhu G P,Singh H P,Batish D R,et al.Tolerance and hyperaccumulation of cadmium by a wild,unpalatable herb Coronopus didymus(L.)Sm.(Brassicaceae)[J].Ecotoxicology and Environmental Safety,2017,135:209–215.
    [6]卫泽斌,郭晓方,吴启堂,等.混合螯合剂的不同施加方式对重金属污染土壤套种修复效果的影响[J].华南农业大学学报,2016,37(1):29–34.Wei Z B,Guo X F,WU Q T,et al.Effects of different application methods of mixed chelators on remediation of heavy metal contaminated soil in interplanting system[J].Journal of South China Agricultural University,2016,37(1):29–34.
    [7]曹莹,赵艺欣,刘玉莲,等.不同玉米品种籽粒中富集镉、铅特性的比较[J].玉米科学,2011,19(3):94–97.Cao Y,Zhao Y X,Liu Y L,et al.Comparison of cadmium and lead accumulation among different maize grains[J].Journal of Maize Sciences,2011,19(3):94–97.
    [8]黄益宗,朱永官,胡莹,等.玉米和羽扇豆、鹰嘴豆间作对作物吸收积累Pb、Cd的影响[J].生态学报,2006,26(5):1478–1485.Huang Y Z,Zhu Y G,Hu Y,et al.Absorption and accumulation of Pb,Cd by corn,lupin and chickpea in intercropping systems[J].Acta Ecologica Sinica,2006,26(5):1478–1485.
    [9]刘海军,陈源泉,隋鹏,等.马唐与玉米间作对镉的富集效果研究初探[J].中国农学通报,2009,25(15):206–210.Liu H J,Chen Y Q,Sui P,et al.The uptake and accumulation effect of Cd in the maize-crabgrass intercropping system[J].Chinese Agricultural Science Bulletin,2009,25(15):206–210.
    [10]Whiting S N,Leake J R,Mc Grath S P,et al.Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of co-cropped Thlaspi arvense[J].Environmental Science and Technology,2001,35:3237–3241.
    [11]Wei S H,Li Y M,Zhou Q X,et al.Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a new discovered hyperaccumulator Solanum nigrum L.[J].Journal of Hazardous Materials,2010,176:269–273.
    [12]汪洁,沈丽波,李柱,等.氮肥形态对伴矿景天生长和锌镉吸收性的影响研究[J].农业环境科学学报,2014,33(11):2118–2124.Wang J,Shen L B,Li Z,et al.Effects of nitrogen forms on growth and Zn/Cd uptake of Sedum plumbizincicola[J].Journal of AgroEnvironment Science,2014,33(11):2118–2124.
    [13]Rehman M Z,Rizwan M,Ali S,et al.Remediation of heavy metal contaminated soils by using Solanum nigrum:A review[J].Ecotoxicology&Environmental Safety,2017,143(9):236–248.
    [14]潘维,徐茜茹,卢琪,等.不同氮形态对镉胁迫下小白菜生长及镉含量的影响[J].植物营养与肥料学报,2017,23(4):973–982.Pan W,Xu Q R,Lu Q,et al.Effects of nitrogen forms on the growth and Cd concentration of pakchoi(Brassica chinensis L.)under Cd stress[J].Journal of Plant Nutrition and Fertilizer,2017,23(4):973–982.
    [15]谭建波,陈兴,郭先华,等.续断菊与玉米间作系统不同植物部位Cd、Pb分配特征[J].生态环境学报,2015,25(4):700–707.Tan J B,Chen X,Guo X H,et al.Distribution characteristics of Pb and Cd in different parts of Sonchus asper and Zea mays in an intercropping system[J].Ecology and Environmental Sciences,2015,25(4):700–707.
    [16]王吉秀,李元,祖艳群,等.铅胁迫下小花南芥和玉米间作体系对植物生理的影响[J].环境科学与技术,2017,40(7):54–59.Wang J X,Li Y,Zu Y Q,et al.Effects of Arabis alpina L.var.parviflora Franch and Zea mays L.in an intercropping system on plant physiology to lead stress[J].Environmental Science&Technology,2017,40(7):54–59.
    [17]姜涛.氮肥运筹对夏玉米产量、品质及植株养分含量的影响[J].植物营养与肥料学报,2013,19(3):559–565.Jiang T.Effects of nitrogen application regime on yield,quality and plant nutrient contents of summer maize[J].Journal of Plant Nutrition and Fertilizer,2013,19(3):559–565.
    [18]秦欢,何忠俊,熊俊芬,等.间作对不同品种玉米和大叶边草吸收积累重金属的影响[J].农业环境科学学报,2013,31(7):1281–1288.Qin H,He Z J,Xiong J F,et al.Effects of intercropping on the contents and accumulation of heavy metals in maize varieties and Pteris cretica L.[J].Journal of Agro-environment Science,2013,31(7):1281–1288.
    [19]李志贤,陈章,陈国梁,等.镉富集植物油菜与玉米间作对玉米吸收积累镉的影响[J].生态学杂志,2016,35(1):26–31.Li Z X,Chen Z,Chen G L,et al.Effects of maize-rape intercropping on Cd uptake and accumulation by maize[J].Chinese Journal of Ecology,2016,35(1):26–31.
    [20]孙磊,郝秀珍,周东美,等.不同氮肥对污染土壤玉米生长和重金属Cu、Cd吸收的影响[J].玉米科学,2014,22(3):137–147.Sun L,Hao X Z,Zhou D M,et al.Effects of different nitrogen fertilizers on growth and heavy metals uptake by corn grown in contaminated soil[J].Journal of Maize Sciences,2014,22(3):137–147.
    [21]陈建军,于蔚,祖艳群,等.玉米(Zea mays)对镉积累与转运的品种差异研究[J].生态环境学报,2014,23(10):1671–1676.Chen J J,Yu W,Zu Y Q,et al.Variety difference of Cd accumulation and translocation in Zea mays[J].Ecology and Environmental Science,2014,23(10):1671–1676.
    [22]鲍士旦.农业化学分析(第3版)[M].北京:中国农业出版社,2000.Bao S D.Soil and agricultural chemistry analysis(3rd edition.)[M].Beijing:China Agriculture Press,2000.
    [23]卫泽斌,郭晓方,丘锦荣,等.间套种体系在污染土壤修复中的应用研究进展[J].农业环境科学学报,2010,29(Supp1.):267–272.Wei Z B,Guo X F,Qiu J R,et al.Innovative technologies for soil remediation:intercropping or co-cropping[J].Journal of AgroEnvironment Science,2010,29(Supp1.):267–272.
    [24]何冰,陈莉,邓金群,等.氮肥类型对东南景天生长及重金属积累的影响[J].南方农业学报,2013,44(5):797–801.He B,Chen L,Deng J Q,et al.Effect of different N fertilizers on the growth of Sedum alfredii and heavy metal accumulation[J].Journal of Southern Agriculture,2013,44(5):797–801.
    [25]Liu Z F,Ge H G,Li C,et al.Enhanced phytoextraction of heavy metals from contaminated soil by plant co-cropping associated with PGPR[J].Water Air and Soil Pollution,2015,226(3):1–10.
    [26]GB 2762-2017.食品安全国家标准-食品中污染物限量[S].GB 2762-2017.National food safety standard-maximum levels of contaminants in foods[S].
    [27]刘安辉,赵鲁,李旭军,等.氮肥对镉污染土壤上小油菜生长及镉吸收特征的影响[J].中国土壤与肥料,2014,(2):77–81.Liu A H,Zhao L,Li X J,et al.Effect of nitrogen fertilizer on rape growth and uptake characteristics of cadmium[J].Soil and Fertilizer Sciences in China,2014,(2):77–81.
    [28]甲卡拉铁,喻华,冯文强,等.氮肥品种和用量对水稻产量和镉吸收的影响[J].中国生态农业学报,2010,18(2):281–285.Jiakalatie,Yu H,Feng W Q,et al.Effect of nitrogen fertilizer type and application rate on cadmium uptake and grain yield of paddy soil[J].Chinese Journal of Eco-Agriculture,2010,18(2):281–285.
    [29]Wei S H,Zhou Q X,Wang L,et al.Cadmium tolerance and accumulation characteristics of Bidenspilosa L.as a potential Cdhyperaccumulator[J].Journal of Hazardous Materials,2009,161(2–3):808–814.
    [30]赵冰,沈丽波,程苗苗,等.麦季间作伴矿景天对不同土壤小麦–水稻生长及锌镉吸收性的影响[J].应用生态学报,2011,22(10):2725–2731.Zhao B,Shen L B,Cheng M M,et al.Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types[J].Chinese Journal of Applied Ecology,2011,22(10):2725–2731.
    [31]Mahmood S,Malik S A,Tabassum A,et al.Biometric and biochemical attributes of alfalfa seedlings as indicators of stress induced by excessive cadmium[J].Journal of Soil Science and Plant Nutrition,2014,14(3):546–553.
    [32]Tang Y,He J,Yu X N,et al.Intercropping with Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions promotes growth and reduces cadmium uptake of eggplant seedlings[J].Pedosphere,2017,27(3):638–644.
    [33]黄化刚,李廷强,朱治强,等.可溶性磷肥对重金属复合污染物土壤东南景天提取锌/镉及其养分积累的影响[J].植物营养与肥料学报,2012,18(2):382–389.Huang H G,Li T Q,Zhu Z Q,et al.Effects of soluble phosphate fertilizer on Zn/Cd phytoextraction and nutrient accumulation of Sedum alfredii H.in co-contaminated soil[J].Plant Nutrition and Fertilizer Science,2012,18(2):382–389.
    [34]王艳红,艾绍英,李盟军,等.氮肥对镉在土壤–芥菜系统中迁移转化的影响[J].中国生态农业学报,2010,18(3):643–653.Wang Y H,Ai S Y,Li M J,et al.Effect of nitrogen fertilization on cadmium translocation in soil–mustard system[J].Chinese Journal of Eco-Agriculture,2010,18(3):643–653.
    [35]Wangstrand H.Effects of nitrogen fertilization on the cadmium concentration in winter wheat grain[D].Uppsala:Dissertation of Saint Louis University,2005
    [36]向倩,许超,张杨珠,等.控释尿素对污染土壤镉有效性的影响[J].中国环境科学,2014,34(12):3150–3156.Xiang Q,Xu C,Zhang Y Z,et al.Effect of different controlledrelease urea on availability of Cd in contaminated soil[J].China Environmental Science,2014,34(12):3150–3156.
    [37]梁佩筠,许超,吴启堂,等.淹水条件下控释氮肥对污染红壤中重金属有效性的影响[J].生态学报,2013,33(9):2919–2929.Liang P J,Xu C,Wu Q T,et al.Effect of different controlled-release nitrogen fertilizers on availability of heavy metals in contaminated red soils under waterlogged conditions[J].Acta Ecologica Sinica,2013,33(9):2919–2929.
    [38]Jiang Q Y,Tan S Y,Zhuo F,et al.Effects of Funneliformis mosseae on the growth,cadmium accumulation and antioxidant activities of Solanum nigrum[J].Applied Soil Ecology,2016,98:112–120.
    [39]Chen B,Ma X X,Liu G Q,et al.An endophytic bacterium Acinetobacter calcoaceticus Sasm 3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape[J].Environmental Science&Pollution Research,2015,22:17625–17635.
    [40]Liu W X,Zhang C J,Hu P J,et al.Influence of nitrogen form on the phytoextraction of cadmium by a newly discovered hyperaccumulator Carpobrotus rossii[J].Environmental Science and Pollution Research,2016,23(2):1246–1253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700