青海高原不同地区大气水汽含量对比分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison and Analysis of Precipitable Water Vapor in Different Regions of the Qinghai Plateau
  • 作者:燕振宁 ; 马学谦
  • 英文作者:YAN Zhenning;MA Xueqian;Meteorological Service Center of Qinghai Province;Weather Modification Office of Qinghai Province;
  • 关键词:大气水汽含量 ; 不同地区 ; 青海高原
  • 英文关键词:precipitable water vapor;;different regions;;the Qinghai Plateau
  • 中文刊名:GSQX
  • 英文刊名:Journal of Arid Meteorology
  • 机构:青海省气象服务中心;青海省人工影响天气办公室;
  • 出版日期:2018-06-30
  • 出版单位:干旱气象
  • 年:2018
  • 期:v.36
  • 基金:国家自然科学基金“三江源地区作业云识别观测验证及其在增水物理检验中的探索研究”(41665008)资助
  • 语种:中文;
  • 页:GSQX201803003
  • 页数:9
  • CN:03
  • ISSN:62-1175/P
  • 分类号:28-35+85
摘要
利用青海省4个探空站和NCEP格点站的大气水汽含量及对应地面站温度和降水资料,对比分析青海高原不同气候区的大气水汽含量及其与气温、降水之间的相互关系。结果表明:青藏高原地区NCEP水汽含量与L波段探空估算的水汽含量变化趋势基本一致。4站大气水汽含量的季节和旬变化特征有明显差异,测站海拔越低大气水汽含量越高且与所处地理位置和地形有关,测站海拔越高时大气水汽含量与大气环流和天气系统密切相关。大于10 mm降水与水汽含量呈正比关系,水汽转化为降水的转化率较高;小降水和无降水与水汽含量关系不明确,水汽转化为降水的转化率较低。虽然降水与温度和水汽含量有一定的正比关系,但青海高原地区降水的产生过程复杂,因而不能用温度和大气水汽含量完全确定能否产生降水。
        Based on the precipitable water vapor( P_(WV) ) of four sounding stations and NCEP grid data,the air temperature and precipitation at ground meteorological stations in Qinghai Province,the characteristics of P_(WV) in different climatic regions in the Qinghai Plateau and the relationship between P_(WV) and air temperature,precipitation were investigated. The results show that the variation trend of NCEP P_(WV) was generally consistent with the P_(WV) estimated by using sounding data. There were remarkable differences about the seasonal and ten-day change features of P_(WV) in different stations. The lower the altitude was,the higher the P_(WV) was,and it had more close relation with topography. Also,it was clearly indicated that P_(WV) in higher elevation areas was largely related to atmospheric circulations and weather systems. It was also concluded that precipitation more than 10 mm was directly proportional to the P_(WV) with higher transformation rate from water vapor into precipitation. There was no obvious correlation between precipitable water vapor and small or no precipitation,and the transformation rate was lower. In addition,although precipitation was proportional to temperature and P_(WV) ,temperature and P_(WV) could not be applied to entirely determine precipitation because of complicated rainfall processes occurring in the Qinghai plateau.
引文
[1]KING M D,KAUFMAN Y J,MENZEL W P,et al.Remote sensing of cloud,aerosol,and water vapor properties from the moderate resolution imaging spectrometer(MODIS)[J].IEEE Transactions on Geoscience&Remote Sensing,1992,30(1):2-27.
    [2]BEVIS M.GPS meteorology:Remote sensing of atmospheric water vapor using GPS[J].Journal of Geophysical Research Atmospheres,1992,97(D14):15787-15801.
    [3]BALDOCCHI D,FALGE E,GU L,et al.FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor,and energy flux densities[J].Bulletin of the American Meteorological Society,2001,82:2415-2434.
    [4]FRATE F D,SCHIAVON G.Neural networks for the retrieval of water vapor and liquid water from radiometric data[J].Radio Science,2016,33(5):1373-1386.
    [5]郭巍,尹球,杜明斌,等.利用地基北斗站反演大气水汽总量的精度检验[J].应用气象学报,2015,26(3):346-353.
    [6]向玉春,陈正洪,徐桂荣,等.三种大气可降水量推算方法结果的比较分析[J].气象,2009,35(11):48-54.
    [7]任菊章,孙绩华,李建,等.云南地区GPS探测与3类再分析可降水量的对比分析[J].高原气象,2014,33(6):1480-1489.
    [8]李国翠,李国平,连志鸾,等.不同云系降水过程中GPS可降水量的特征——华北地区典型个例分析[J].高原气象,2008,27(5):1066-1073.
    [9]郭洁,李国平.地基GPS探测水汽的发展与气象业务应用[J].大地测量与地球动力学,2007,27(专刊):35-42.
    [10]李国平.地基GPS水汽监测技术及气象业务化应用系统的研究[J].大气科学学报,2011,34(4):385-392.
    [11]张小军,马学谦,田建兵.1961—2015年青海省总云量时空变化特征及影响因子[J].干旱气象,2017,35(4):694-701.
    [12]徐栋,孔莹,王澄海.西北干旱区水汽收支变化及其与降水的关系[J].干旱气象,2016,34(3):431-439.
    [13]张娟,肖宏斌,徐维新,等.1971—2010年柴达木盆地可降水量变化特征及其与气象条件分析[J].资源科学,2013,35(11):2289-2297.
    [14]校瑞香,祁栋林,周万福,等.1971—2010年青海高原不同功能区可降水量的变化特征[J].冰川冻土,2014,36(6):1456-1464.
    [15]康晓燕,马学谦,韩辉邦,等.1981—2015年黄河上游河曲地区大气可降水量变化特征[J].干旱气象,2017,35(6):975-983.
    [16]施晓晖.青藏高原东缘对流云和水汽观测试验简介[J].气象科技进展,2014,4(5):48-53.
    [17]梁潇云,钱正安,李万元.青藏高原东部牧区雪灾的环流型及水汽场分析[J].高原气象,2002,21(4):359-367.
    [18]袁野,王成章,蒋年冲,等.不同云天条件下水汽含量特征及其变化分析[J].气象科学,2005,25(4):394-398.
    [19]王江山.青海天气气候[M].北京:气象出版社,2004.
    [20]ATWATER M A,BALL J T.A numerical solar radiation model based on standard meteorological observations[J].Solar Energy,1978,21(3):163-170.
    [21]苗运玲,李如琦,卓世新.天山北坡东段GPS反演的大气可降水量变化特征及其与降水的关系[J].干旱气象,2016,34(6):989-994.
    [22]李军霞,李培仁,晋立军,等.地基微波辐射计在遥测大气水汽特征及降水分析中的应用[J].干旱气象,2017,35(5):767-775.
    [23]杨景梅,邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J].大气科学,2002,26(1):9-22.
    [24]姚宜斌,雷祥旭,张良,等.青藏高原地区1979—2014年大气可降水量和地表温度时空变化特征分析[J].科学通报,2016,61(13):1462-1477.
    [25]刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):115-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700