顾及空间集聚程度的中国高温灾害危险性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment of China's High-Temperature Hazards: Accounting for Spatial Agglomeration
  • 作者:张婷 ; 程昌秀
  • 英文作者:ZHANG Ting;CHENG Changxiu;State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University;Key Laboratory of Environmental Change and Natural Disaster, Beijing Normal University;Faculty of Geographical Science, Beijing Normal University;Center for Geodata and Analysis, Beijing Normal University;
  • 关键词:高温灾害 ; 危险性评价 ; 综合高温危险性指标 ; 空间聚集程度 ; 变化趋势 ; 中国
  • 英文关键词:high temperature hazards;;hazard assessment;;integrative high temperature hazardness index;;spatial agglomeration degree;;trend analysis;;China
  • 中文刊名:DQXX
  • 英文刊名:Journal of Geo-information Science
  • 机构:北京师范大学地理数据与应用分析中心;北京师范大学环境演变与自然灾害教育部重点实验室;北京师范大学地理科学学部;北京师范大学地表过程与资源生态国家重点实验室;
  • 出版日期:2019-06-25
  • 出版单位:地球信息科学学报
  • 年:2019
  • 期:v.21;No.142
  • 基金:国家自然科学基金面上项目(41771537)~~
  • 语种:中文;
  • 页:DQXX201906008
  • 页数:10
  • CN:06
  • ISSN:11-5809/P
  • 分类号:71-80
摘要
高温危险性评估是高温灾害研究的基础性工作。本研究在传统高温灾害危险性评价的基础上增加了高温空间集聚程度指标,完善了高温危险性的评价角度,考虑了高温灾害群发对高温危险性的增强作用。基于高温日数、高温强度、高温空间集聚程度对1979-2017年中国高温危险性进行了综合评价,并分析了各项指标及其年际变化速率的空间分布特征,提取出高温综合高危区及和各指标同时增强的区域。研究结果表明:①不考虑高温空间集聚程度会造成内蒙古西部及东北部、山西北部等地的高温危险性被低估,存在4级高温危险性被低估为2级或3级;②目前高温综合危险性最强的地区分布在新疆天山南部、湖南东部等地,表现为年平均高温日数2036 d,高温强度1.190~2.180℃,平均集聚程度13.390~18.710个;③江苏、内蒙古甘肃交界处及四川重庆交界处等地的3项评价指标均逐年显著增强,具体表现为从1979-2017年,年平均高温日数变率0.419~0.740天/年,高温强度变率0.30~0.42℃/10年,平均集聚程度变率0.250~0.390个/年。今后这些地区可能成为高温综合危险性最高的地区。该高温危险性评价方法有助于提升高温灾害风险评估的准确性,危险性变化趋势结果有助于预估未来高温灾害的高危区。
        Hazardness assessment is the basis of high temperature hazard(HTH) research. The spatial aggregation of multiple extreme high temperature events will magnify the impacts of extreme events, which not only strengthen high temperature risk, but also increase the vulnerability of disaster-bearing bodies. Previous studies mainly use high temperature days and high temperature intensity to depict HTH, yet seldom consider the the spatial agglomeration of high temperature events. To address this gap, the HTH assessment in this paper integrates the traditional HTH assessment and the spatial agglomeration of high temperature events. In so doing,the evaluation of HTH is more comprehensive by accunting for the synergy effect of high temperature hazard agglomeration. Based on high temperature days, high temperature intensity, and high temperature spatial agglomeration,HTH in China from 1979 to 2017 was evaluated integratively. The spatial distribution characteristics of these indices were illustrated and their inter-annual variations were analyzed. Finally, areas with the highest integrative high temperature intensity and regions with simultaneous enhancement of the three indices were idenified separately. The results show that the strength of HTH in western and northeastern Inner Mongolia and northern Shanxi is underestimated due to the lack of consideration of high temperature spatial agglomeration, where the Grade 4 HTH is underestimated to be Grade 2 or 3. On the other hand, if HTH assessment considered only the number of high temperature days, the high temperature hazardness in most areas of Inner Mongolia,Heilongjiang, Shandong, and the northern part of western Shaxi would have been underestimated. This indicates that HTH assessment needs to account for the three indices simultaneouly. From the results of integrative assessment, for now, the most dangerous areas due to high temperature are located in southern Tianshan Mountains and eastern Hunan, where high temperature days are 20-36 days, high temperature intensity ranges from 1.190 ℃ to 2.180 ℃ and high temperature spatial agglomeration ranges from 13.390 to 18.710. From the results of inter-annual variations, all of the three indices significantly increased in the junction of Inner Mongolia and Gansu, Jiangsu, and the junction of Sichuan and Chongqing. These areas may become the most dangerous areas of high temperature hazards in the future, where from 1979 to 2017 the variability of high temperature days is 0.419-0.740 days/year, the variability of high temperature intensity is 0.30-0.42 ℃/10 years and the variability of high temperature spatial agglomeration is 0.250-0.390 per year. The proposed HTH assessment method is helpful to improve the accuracy of risk assessment of high temperature hazards, and the results of our trend analysis of these indices can help predict the high-risk areas. In addition, the method can identify the high-risk areas of each hazard factor and also the dominant factor of each high-risk area. It provides a scientific basis for targeted high temperature prevention and mitigation, as well as resource allocation over the whole China.
引文
[1] Jeppesen E, Kronvang B, Meerhoff M, et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations[J].Journal of Environmental Quality, 2009,38(5):1930-1941.
    [2] Dhara V R, Schramm P J, Luber G. Climate change&infectious diseases in India:Implications for health care providers[J]. Indian Journal of Medical Research, 2013,138(6):847-852.
    [3] Piao S, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China[J].Nature, 2010,467(7311):43-51.
    [4] Sheridan S C, Allen M J. Changes in the frequency and intensity of extreme temperature events and human health concerns[J]. Current Climate Change Reports, 2015,1(3):155-162.
    [5] IPCC. Climate Change 2007. Working group I contribution to the fourth assessment report of the intergovernmental panel on climate change[C]. Cambridge, UK and New York, USA:Cambridge University Press, 2007.
    [6] Perkins S E, Alexander L V, Nairn J R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells[J]. Geophysical Research Letters, 2012,39(20):20714.
    [7]刘娅,杜宗豪,王越,等. 2010年北京热浪对医院急诊量的影响[J].华南预防医学,2014(4):322-326.[Ya L, Du Z H, Yue W, et al. Impacts of heat waves on emergency department visits in Beijing, 2010[J]. South China Journal of Preventive Medicine, 2014(4):322-326.]
    [8]李懿珈,叶涛,王尧,等.湖南省水稻气象灾害多致灾因子时空特征研究[J].北京师范大学学报(自然科学版),2017,53(1):99-104.[Li Y J, Ye T, Wang Y, et al. Temporal-spatial distribution characteristics of paddy rice meteorological multi-hazard in Hunan Province[J]. Journal of Beijing Normal University(Natural Science), 2017,53(1):99-104.]
    [9]杨绚,汤绪,陈葆德,等.气候变暖背景下高温胁迫对中国小麦产量的影响[J].地理科学进展,2013,32(12):1771-1779.[Yang X, Tang X, Chen B D, et al. Impacts of heat stress on wheat yield due to climatic warming in China[J]. Progress in Geography, 2013,32(12):1771-1779.]
    [10]陈香.福建省台风灾害风险评估与区划[J].生态学杂志,2007,26(6):961-66.[Chen X. Risk assessment and zonation of typhoon disasters in Fujian Province[J]. Chinese Journal of Ecology, 2007,26(6):961-966.]
    [11]陈倩,丁明军,杨续超,等.长江三角洲地区高温热浪人群健康风险评价[J].地球信息科学学报,2017,19(11):1475-1484.[Chen Q,Ding M J, Yang C X, et al. Spatially explicit assessment of heat health risks using multi-source data:A case study of the Yangtze River Delta Region,China[J]. Journal of Geo-information Science, 2017,19(11):1475-1484.]
    [12]宋晨阳,王锋,张韧,等.气候变化背景下我国城市高温热浪的风险分析与评估[J].灾害学,2016,31(4):201-206.[Song C Y, Wang F, Zhang R, et al. Risk analysis and assessment of high-temperature and heat-wave disaster in chinese cities under the background of climate change[J].Journal of Catastrophology, 2016,31(4):201-206.]
    [13]陈楠,黄玉芳,冯雪.基于GIS的菏泽市高温灾害风险评估与区划[J].中国农学通报,2016,32(35):184-187.[Chen N, Huang Y F, Feng X. High temperature disaster:risk assessment and zoning based on GIS in Heze[J]. Chinese Agricultural Science Bulletin, 2016,32(35):184-187.]
    [14]王静爱,史培军,朱骊.中国主要自然致灾因子的区域分异[J].地理学报,1994,49(1):18-26.[Wang J A, Shi P J,Zhu L. A research on regional distribution of major natural hazards in China[J]. Acta Geographica Sinica, 1994,49(1):18-26.]
    [15]谢盼,王仰麟,彭建,等.基于居民健康的城市高温热浪灾害脆弱性评价-研究进展与框架[J].地理科学进展,2015,34(2):165-174.[Xie P, Wang Y L, Peng J, et al. Health related urban heat wave vulnerability assessment:research progress and framework[J]. Progress In Geography, 2015,34(2):165-174.]
    [16]贺山峰,戴尔阜,葛全胜,等.中国高温致灾危险性时空格局预估[J].自然灾害学报,2010,19(2):91-97.[He S F,Dai E F, Ge Q S, et al. Pre-estimation of spatiotemporal pattern of extreme heat hazard in China[J]. Journal of Natural Disasters, 2010,19(2):91-97.]
    [17]雷杨娜,龚道溢,孙娴,等.基于全球模式对中国21世纪夏季高温的变化预估[J].北京师范大学学报(自然科学版),2010,46(1):85-91.[Lei Y N, Gong D Y, Sun X, et al.Evaluating the simulation by GCMS of summer high-temperatures in China[J]. Journal of Beijing Normal University(Natural Science), 2010,46(1):85-91.]
    [18]谢盼,王仰麟,刘焱序,等.基于社会脆弱性的中国高温灾害人群健康风险评价[J].地理学报,2015,70(7):1041-1051.[Xie P, Wang Y L, Liu Y X, et al. Incorporating social vulnerability to assess population health risk due to heat stress in China[J]. Acta Geographica Sinica, 2015,70(7):1041-1051.]
    [19] Yin Z E, Yin J, Zhang X. Multi-scenario-based hazard analysis of high temperature extremes experienced in China during 1951-2010[J]. Journal of Geographical Sciences, 2013,23(3):436-446.
    [20]苗爱梅,贾利冬,李苗,等.近50年山西高温日的时空分布及环流特征[J].地理科学进展,2011,30(7):837-845.[Miao A M, Jia L D, Li M, et al. The temporal and spatial distributions and circulation features of high temperature days during last 50 years in Shanxi[J]. Progress in Geography, 2011,30(7):837-845.]
    [21]史培军,吕丽莉,汪明,等.灾害系统:灾害群、灾害链、灾害遭遇[J].自然灾害学报,2014,23(6):1-12.[Shi P J, Lv L L, Wang M, et al. Disaster system:Disaster cluster,disaster chain and disaster compound[J]. Journal of Natural Disasters, 2014,23(6):1-12.]
    [22]钱永兰,吕厚荃,韩丽娟,等. 2011年夏季气候对农业生产的影响[J].中国农业气象,2011,32(4):638-639.[Qian Y L, Lv H Q, Han L J, et al. 2011年夏季气候对农业生产的影响[J]. Chinese Journal of Agrometeorology, 2011,32(4):638-639.]
    [23]刘维,韩丽娟. 2016年夏季气候对农业生产的影响[J].中国农业气象,2016,37(5):611-613.[Liu W, Han L J. 2011年夏季气候对农业生产的影响[J]. Chinese Journal of Agrometeorology, 2011,37(5):611-613.]
    [24]唐恬,金荣花,彭相瑜,等. 2013年夏季我国南方区域性高温天气的极端性分析[J].气象,2014,40(10):1207-1215.[Tang T,Jin R H,Peng X Y, et al. Analysis on extremely high temperature over southern China in summer 2013[J]. Meteorological Monthly, 2014,40(10):1207-1215.]
    [25] Zwiers F W, Von Storch H. On the role of statistics in climate research[J]. International Journal of Climatology,2004,24(24):665-680.
    [26]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007:36-69.[Wei F Y. Modern Technology of Statistics Diagnosis and Forecast for Climate[M]. Beijing:China Meteorological Press, 2007:36-69.]
    [27]高荣,王凌,高歌. 1956-2006年中国高温日数的变化趋势[J].气候变化研究进展,2008,4(3):177-181.[Gao R,Wang L, Gao G. The Trend of Variation in High Temperature Days During 1956-2006 in China[J]. Advances in Climate Change Research, 2008,4(3):177-181.]
    [28]叶殿秀,尹继福,陈正洪,等. 1961-2010年我国夏季高温热浪的时空变化特征[J].气候变化研究进展,2013,9(1):15-20.[Ye D X, Yin J F, Chen Z H, et al. Spatiotemporal change characteristics of summer heatwaves in China in1961-2010[J]. Advances in Climate Change Research,2013,9(1):15-20.]
    [29]任景全,郭春明,刘玉汐,等. 1961-2015年吉林省极端气温指数时空变化特征[J].生态学杂志,2017,36(11):3224-3234.[Ren J Q, Guo C M, Liu Y X, et al. Spatiotemporal change characteristics of extreme temperature indices in Jilin Province during 1961-2015[J]. Chinese Journal of Ecology, 2017,36(11):3224-3234.]
    [30]陈正洪,向华,高荣.武汉市10个主要极端天气气候指数变化趋势分析[J].气候变化研究进展,2010,6(1):22-28.[Chen Z H, Xiang H, Gao R. Trends of ten main extreme weather indices in Wuhan[J]. Climate Change Research, 2010,6(1):22-28.]
    [31]周洋,祝善友,华俊玮,等.南京市高温热浪时空分布研究[J].地球信息科学学报,2018,20(11):1613-1621.[Zhou Y,Zhu S Y, Hua J W, et al. Spatio-temporal distribution of high temperature heat wave in Nanjing[J]. Journal of Geoinformation Science, 2018,20(11):1613-1621.]
    [32] Chen Y, Hu Q, Yang Y M, et al. Anomaly based analysis of extreme heat waves in Eastern China during 1981-2013[J]. International Journal of Climatology, 2017,37(1):509-523.
    [33]高路, Karsten Schulz,陈兴伟,等.基于ERA-Interim再分析资料的中国极端气温分析[J].南水北调与水利科技,2014,12(2):75-78.[Gao L, Schulz K, Chen X W, et al.Analysis of extreme temperatures in China based on ERA-Interim reanalysis data[J]. South-to-North Water Transfers and Water Science&Technology, 2014,12(2):75-78.]
    [34]高路,郝璐. ERA-Interim气温数据在中国区域的适用性评估[J].亚热带资源与环境学报,2014,9(2):75-81.[Gao L, Hao L. Verification of ERA-Interim reanalysis data over China[J]. Journal of Subtropical Resources and Environment, 2014,9(2):75-81.]
    [35]赵颜创,赵小锋,刘乐乐.厦门市高温热浪人群健康风险格局分析[J].地球信息科学学报,2016,18(8):1094-1102.[Zhao Y C, Zhao X F, Liu L L. Spatial pattern analysis on human health risk of heatwave in Xiamen city[J]. Journal of Geo-information Science, 2016,18(8):1094-1102.]
    [36]黄慧琳,缪启龙,潘文卓,等.杭州市高温致灾因子危险性风险区划[J].气象与减灾研究,2012,35(2):51-56.[Hang H L, Miu Q L, Pan W Z, et al. Risk zoning of high-temperature disaster-inducing factors in Hangzhou[J]. Meteorology&Disaster Reduction Research, 2012,35(2):51-56.]
    (1)http://apps.ecmwf.int/datasets。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700