用户名: 密码: 验证码:
上海青草沙水库食物网结构特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Food Web Structure in Qingcaosha Reservoir of Shanghai, China
  • 作者:胡忠军 ; 史先鹤 ; 吴昊 ; 李亚雷 ; 李晓雪 ; 陈立侨 ; 刘其根
  • 英文作者:HU Zhong-jun;SHI Xian-he;WU Hao;LI Ya-lei;LI Xiao-xue;CHEN Li-qiao;LIU Qi-gen;National Experimental Teaching Demonstration Center of Aquatic Science,Shanghai Ocean University;Ministry of Agriculture Key Laboratory of Freshwater Fisheries Genetic Resources,Shanghai Ocean University;Center for Fish Nutrition and Environmental Ecology,Department of Agriculture,Shanghai Ocean University;Nanjing Institute of Environment Science,Ministry of Environmental Protection;School of Life Science,East Normal University;
  • 关键词:食物网 ; 营养级 ; 碳氮稳定同位素 ; 青草沙水库
  • 英文关键词:food web;;trophic level;;stable carbon and nitrogen isotope;;Qingcaosha Reservoir
  • 中文刊名:SCAN
  • 英文刊名:Journal of Hydroecology
  • 机构:上海海洋大学水产科学国家级实验教学示范中心;上海海洋大学农业部淡水水产种质资源重点实验室;上海海洋大学农业部鱼类营养与环境生态研究中心;环境保护部南京环境科学研究所;华东师范大学生命学院;
  • 出版日期:2019-03-15
  • 出版单位:水生态学杂志
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2017YFC0506003);; 上海市科委2009重大专项(09dz1200100);; 上海高校知识服务平台上海海洋大学水产动物遗传育种中心项目(ZF1206)
  • 语种:中文;
  • 页:SCAN201902008
  • 页数:8
  • CN:02
  • ISSN:42-1785/X
  • 分类号:49-56
摘要
为了给青草沙水库生态系统能量流动和物质循环分析提供基础数据,并为生物操纵等生态修复实践提供科学依据,在青草沙水库采集了鱼类、底栖动物、浮游植物、浮游动物和悬浮物样品,结合碳氮稳定同位素(δ~(13)C和δ~(15)N)技术和胃肠内含物分析法,利用IsoSource软件计算了不同食物对消费者的贡献率,并应用"简化食物网"原则,构建青草沙水库生态系统食物网,分析其结构特征。结果显示,青草沙水库食物网的δ~(13)C值为-28.15‰~-21.53‰,δ~(15)N值为6.81‰~14.94‰。在青草沙水库中,刀鲚Coilia nasus和红鳍原鲌Culter erythropterus属于顶级肉食者,其营养级分别3.595和3.589,其他鱼类的营养级在2.482~3.264。青草沙水库食物网结构显示,浮游动物对杂食性鱼类贝氏歺又鱼Hemiculter bleekeri(34%)和寡鳞飘鱼Pseudolaubuca engraulis(32%)的碳源贡献率较高,浮游植物对似鱎Toxabramis swinhonis的贡献率(31%)高于浮游动物(11%),大型无脊椎动物对黄颡鱼Pelteobagrus fulvidraco(60%)和光泽黄颡鱼Pseudobagrus nitidus(64%)的贡献率远高于其他食物成分,处在食物网顶端的刀鲚和红鳍原鲌的食物主要来源于饵料鱼类。青草沙水库食物链长度为3.60个营养级。
        Qingcaosha Reservoir was constructed in 2007 to assure drinking water safety for Shanghai City. The reservoir, situated at the Qingcao sandbar of Changxing Island in the Yangtze River estuary, began supplying water in 2010. In this study, the food web of Qingcaosha Reservoir was constructed and its structural characteristics and inter-specific trophic relationships were analyzed by combining stable carbon and nitrogen isotope analysis with gut content analysis. The contribution of potential food sources was calculated using the IsoSource′ software package. The study provides fundamental data for analyzing energy flow and matter circulation in Qingcaosha Reservoir and a scientific basis for ecological restoration using bio-manipulation. In August and October 2011, fish, zoobenthos, zooplankton, phytoplankton and seston samples were collected in Qingcaosha Reservoir. The δ~(13)C values in the food web in Qingcaosha Reservoir ranged from-28.15‰ to-21.53‰ and δ~(15)N values ranged from 6.81‰ to 14.94‰. Coilia nasus and Chanodichthys erythropterus were the two top predators, at trophic levels of 3.595 and 3.589, respectively. The trophic level of other fish species ranged from 2.482 to 3.264. The trophic level of an unidentified Nereididae species was higher than for other benthic macro-invertebrates. Zooplankton provided 34% of the carbon for Hemiculter bleekeri and 32% for Pseudolaubuca engraulis, while phytoplankton contributed a higher proportion(32%) to the food supply of Toxabramis winhonis than did zooplankton(11%). Benthic macroinvertebrates were the primary food source of Tachysurus fulvidraco(64%)and Tachysurus nitidus(60%), while the primary food of C. nasus and C. erythropterus were forage fish. The length of the food chain in Qingcaosha Reservoir was 3.60, shorter than the reported average length(4.0) in lakes, and attributed to the relatively smaller water surface area of Qingcaosha Reservoir and no catch of species from higher trophic levels. Results also indicate that sediments contributed little to the carbon source of benthic macro-invertebrates in Qingcaosha Reservoir, due to the low concentration of organic carbon in sediments. To define dietary compositions more precisely, collection and analysis of food source species should continue, with consumer collection and analysis used as a complementary method.
引文
黄建辉, 钱迎倩, 马克平, 1994. 生态系统内的物种多样性对稳定性的影响:生物多样性研究的原理与方法[M]. 北京: 中国科学技术出版社.
    黄亮, 吴莹, 张经, 2009. 脂肪酸标志水生生态系统营养关系的研究[J]. 海洋科学, 33(3): 93-96.
    李亚雷, 吴昊, 刘其根, 等, 2015. 单层刺网不同网目渔获组成—以上海青草沙水库为例[J]. 应用生态学报, 26(8): 2518-2524.
    李忠义, 金显仕, 庄志猛, 等, 2005. 稳定同位素技术在水域生态系统研究中的应用[J]. 生态学报, 25(11): 260-268.
    麻秋云, 韩东燕, 刘贺, 等, 2015. 应用稳定同位素技术构建胶州湾食物网的连续营养谱[J]. 生态学报, 35(21): 7207-7218.
    全为民, 2007. 长江口盐沼湿地食物网的初步研究:稳定同位素分析[D]. 上海:复旦大学.
    滕瑜, 王印庚, 王彩理, 2004. 沙蚕的营养分析与功能研究[J]. 海洋科学进展, 22(2): 215-218.
    王银东, 熊邦喜, 陈才保, 等, 2005. 环境因子对底栖动物生命活动的影响[J]. 浙江海洋学院学报 (自然科学版), 24(3): 253-357.
    王玉玉, 于秀波, 张亮, 等, 2009. 应用碳、氮稳定同位素研究鄱阳湖枯水末期水生食物网结构[J]. 生态学报, 29(3): 1181-1188.
    温周瑞, 熊鹰, 徐军, 等, 2016. 太湖贡湖湾食物网特征研究[J]. 水生生物学报, 40(1): 131-138.
    杨持, 2008. 生态学[M]. 北京:高等教育出版社.
    杨国欢, 侯秀琼, 孙省利, 等, 2013. 流沙湾食物网结构的初探—基于稳定同位素方法的分析结果[J]. 水生生物学报, 37(1): 150-156.
    余婕, 刘敏, 侯立军, 等, 2008. 崇明东滩大型底栖动物食源的稳定同位素示踪[J]. 自然资源学报, 23(2): 319-326.
    张波, 唐启升, 金显仕, 2009. 黄海生态系统高营养层次生物群落功能群及其主要种类[J]. 生态学报, 29(3): 1099-1111.
    张欢, 谢平, 吴功果, 等, 2013. 日本沼虾与秀丽白虾的营养生态位[J]. 环境科学研究, 26(1): 22-26.
    张迎秋, 许强, 徐勤增, 等, 2016. 海州湾前三岛海域底层鱼类群落结构特征[J]. 中国水产科学, 23(1): 156-168.
    张月平, 2005. 南海北部湾主要鱼类食物网[J]. 中国水产科学, 12(5): 621-631.
    Chassot E, Rouyer T, Trenkel V M, et al, 2008. Investigating trophic-levle variability in Celtic Sea fish predators[J]. J Fish Biol, 73(4) : 763-781.
    Davenport S R, Bax N J, 2002. A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen[J]. Can J Fish Aquat Sci, 59(3): 514-530.
    Davis A M, Blanchette M L, Pusey B J, et al, 2012. Gut content and stable isotope analyses provide complementary understanding of ontogenetic dietary shifts and trophic relationships among fishes in a tropical river[J]. Freshwater Biol, 57(10): 2156-2172.
    Douglass J G, Emmett Duffy J, Canuel E A, 2011. Food Web Structure in a Chesapeake Bay Eelgrass Bed as Determined through Gut Contents and 13C and 15N Isotope Analysis[J]. Estuar Coast, 34(4): 701-711.
    Graeve M, Kattner G, Wiencke C, et al, 2002. Fatty acid composition of Arctic and Antarctic macroalgae: indicators for phylogenetic and trophic relationships[J]. Mar Ecol-Prog Ser, 231: 67-74.
    Grall J, Loc'h FL, Guyonnet B, Riera P, 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed[J]. J Exp Mar Biol Ecol, 338(1): 1-15.
    Hamano T, Hayashi K I, Kubota K, et al, 1996. Population Structure and Feeding Behavior of the Stomatopod Crustacean Kempina mikado (Kemp & Chopra, 1921) in the East China Sea[J]. Fisheries Sci, 62(3): 397-399.
    Harvey C J, Kitchell J F, 2000. A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web[J]. Can J Fish Aquat Sci, 57(7): 1395-1403.
    Heath M R, 2005. Changes in the structure and function of the North Sea fish foodweb, 1973–2000, and the impacts of fishing and climate[J]. ICES J Mar Sci: Journal du Conseil, 62(5): 847-868.
    Iken K, Bluhm B, Gradinger R, 2005. Food web structure in the high Arctic Canada Basin: evidence from δ13C and δ15N analysis[J]. Polar Biol, 28(3): 238-249.
    Jones J I, Waldron S, 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes[J]. Freshwater Biol, 48(8): 1396-1407.
    Kling G W, Fry B, O'Brien W J, 1992. Stable isotopes and planktonic trophic structure in arctic lakes[J]. Ecology, 73(2): 561-566.
    Kurata K, Minami H, Kikuchi E, 2001. Stable isotope analysis of food sources for salt marsh snails[J]. Mar Ecol-Prog Ser, 223: 167-177.
    MacArthur R, 1955. Fluctuations of animal populations and a measure of community stability[J]. Ecology, 36(3): 533-536.
    Mao Z, Gu X, Zeng Q, et al, 2012. Food web structure of a shallow eutrophic lake (Lake Taihu, China) assessed by stable isotope analysis[J]. Hydrobiologia, 683(1): 173-183.
    Post D M, Pace M L, Hairston N G, 2000. Ecosystem size determines food-chain length in lakes[J]. Nature, 405(6790): 1047-1049.
    Post D M, 2002. The long and short of food-chain length. Trends in Ecology & Evolution, 17(6): 269-277.
    Vander Zanden M J, Casselman J M, Rasmussen J B, 1999. Stable isotope evidence for the food web consequences of species invasions in lakes[J]. Nature, 401: 464-467.
    Vander Zanden M J, Shuter B J, Lester N, et al, 1999. Patterns of food chain length in lakes: a stable isotope study[J]. Am Nat, 154(4): 406-416.
    Vander Zanden M J, Rasmussen J B, 2001. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies[J]. Limnol Oceanogr, 46(8): 2061-2066.
    Vander Zanden M J, Chandra S, Allen B C, et al, 2003. Historical food web structure and the restoration of native aquatic communities in the Lake Tahoe (California-Nevada) basin[J]. Ecosystems, 6(3): 274-288.
    Vander Zanden M J, Fetzer W W, 2007. Global patterns of aquatic food chain length[J]. Oikos, 116(8): 1378-1388.
    Whitledge T E, Reeburgh W S, WALSH J, 1988. Food web structure on Georges Bank from stable C, N, and S isotopic compositions[J]. Deep-Sea Res, 32: 85-95.
    Xu J, Zhang M, Xie P, 2007. Stable carbon isotope variations in surface bloom scum and subsurface seston among shallow eutrophic lakes[J]. Harmful Algae, 6(5): 679-685.
    Zhang L, Xu J, Xie P, et al, 2011. Stable isotope variations in particulate organic matter and a planktivorous fish in the Yangtze River[J]. J Freshwater Ecol, 22(3): 82-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700