基于应变设计的管线钢管变形行为研究述评
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comment on Studies of Deformation Behavior of Pipeline Steel Based on Strain Design
  • 作者:董瑾
  • 英文作者:DONG Jin;Periodical Center,Xi'an Shiyou University;
  • 关键词:大应变管线钢管 ; 应变设计 ; 塑性变形 ; 力学性能 ; 微观组织
  • 英文关键词:line pipe with high strain capacity;;strain-based design;;deformation;;mechanical property;;microstructure
  • 中文刊名:XASY
  • 英文刊名:Journal of Xi'an Shiyou University(Natural Science Edition)
  • 机构:西安石油大学期刊中心;
  • 出版日期:2019-07-25
  • 出版单位:西安石油大学学报(自然科学版)
  • 年:2019
  • 期:v.34;No.177
  • 语种:中文;
  • 页:XASY201904015
  • 页数:7
  • CN:04
  • ISSN:61-1435/TE
  • 分类号:100-106
摘要
随着油气输送向极地、海洋和非稳定地质区域的延伸,油气管道面临着冻土、洋流、滑坡、泥石流、活动断层和地震带等恶劣环境的威胁。基于应变的设计和采用应变能力较强的大应变管线钢管成为当代油气管线的发展趋势。首先对屈曲应变理论的研究历史及近年来的研究进展进行了回顾,其次对大应变管线钢组织与性能研究现状加以归纳分析,认为基于应变设计地区使用的钢管除了需要考虑普通钢管的基本强韧性要求外,还需要考虑大应变管线钢管在管体纵向的特殊性能,尤其是塑性变形容量相关指标,而这些参数与组织结构密切相关。
        With the extension of oil and gas transportation line to polar,oceans and unstable geological regions,oil and gas pipelines face the threat of harsh environment such as permafrost,ocean currents,landslides,debris flows,active faults and seismic zones.The use of the steel pipe designed based on strain or with high strain capacity becomes the trend of oil and gas transportation pipeline gradually.Firstly,the research history and progress of buckling strain theory in recent years are reviewed,especially the prediction methods of pipe buckling strain considering different effect factors under bending condition.Secondly,the research situation of microstructure and properties of pipeline steel products with high strain are summarized inductively.It is held that for the pipes with high strain used in strain-based design areas,in addition to the fundamental requirements of strength and toughness of ordinary pipe,the pipe body longitudinal special performance shall be considered,especially the parameters related to the plastic deformation capacity,which are closely related to microstructure.
引文
[1] SHERMAN D.Tests of circular steel tubes in bending[J].ASCE Journal of Structural Division,1976,102(11):2181-2195.
    [2] GRESNIGT A M.Plastic design of buried steel pipelines in settlement areas[J].Heron,1986,31(4):132-141.
    [3] STEPHENS D R,OLSON R J,ROSENFELD M J.Topical Report on Pipeline Monitoring to Limit State Criteria[R].Columbus:Battelle,1991.
    [4] ZIMMERMAN T J,STEPHENS M J,DEGEER D D,et al.Compressive strain limits for buried pipelines[C].International Conference on Offshore Mechanics and Arctic Engineering,1995:365-372.
    [5] KARAMANOS S A,TSOUVALAS D,GRESNIGT A M.Ultimate bending capacity and buckling of pressurized 90 deg steel elbows[J].Journal of Pressure Vessel Technology-Transactions of the ASME,2006,128(3):348-356.
    [6] VITALI L,BRUSCHI R.Hotpipe project:capacity of pipes subject to internal pressure,axial force and bending moment[C].Proceedings of the 9th International Offshore and Polar Engineering Conference,Brest,France,1999:452-461.
    [7] DNV.Submarine Pipeline Systems:DNV-OS-F101[S].2000.
    [8] DOREY A B,MURRAY D W,CHENG J J R.Initial geometric models for segments of linepipe[J].Journal of Offshore Mechanics and Arctic Engineering,2006,128(8):772-780.
    [9] SUZUKI N,IGI S.Compressive strain limits of X80 high-strain line pipes[C].Proceedings of the 17th International Offshore and Polar Engineering Conference,Lisbon,Portugal,July 1-6,2007:321-330,521-533.
    [10] KAREL Minnaar,BRIAN W Dufft.Structural design of X120 linepipe[C].Proceeding of International Pipeline Conference,Cargary,Alberta,Canada,2004:118-193.
    [11] DOREY A B,MURRAY D W,CHENG J J R.Critical buckling strain equations for energy pipelines:a parametric study[J].Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme,2006,128(3):248-255.
    [12] TSURU E,JUN Agata.Buckling resistance of line pipes with girth weld evaluated by new computational simulation and experimental technology for full-scale pipes[C].Proceedings of the Nineteenth International Offshore and Polar Engineering Conference,Osaka,Japan,2009:88-96.
    [13] VAN Es S H J,GRESNIGT A M,KOLSTEIN M H,et al.Strain based design of spirally welded pipes,local buckling in 4-point bending[C].Proceedings of the Twenty-fourth (2014) International Ocean and Polar Engineering Conference,Busan,Korea,June 15-20,2014:125-132.
    [14] 吉玲康,李鹤林,陈宏远,等.管线钢管局部屈曲应变分析与计算[J].应用力学学报,2012,29(6):758-762.
    [15] 李鹤林,李霄,吉玲康,等.油气管道基于应变的设计及抗大变形管线钢的开发与应用[J].焊管,2007,30(5):5-11.LI Helin,LI Xiao,JI Lingkang,et al.Strain-based design for pipe line and development of pipe steels with high deformation resistance[J].Welded Pipe and Tube,2007,30(5):5-11.
    [16] CHATZIDOUROS E V,PAPAZOGLOU V J,PANTELIS D I.Hydrogen effect on a low carbon ferritic-bainitic pipeline steel[J].International Journal of Hydrogen Energy,2014,39(32):18498-18505.
    [17] LI Rutao,ZUO Xiurong,HU Yueyue,et al.Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure[J].Materials Characterization,2011,62(8):801-806.
    [18] Hüper T,ENDO S,ISHIKAWA N,et al.Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels[J].ISIJ International,1999,39(3):288-294.
    [19] MARTINUSSEN E.Reuse of subsea pipelines and risersb[C].Pipeline Technology Conference,Ostend,Belgium,1995:363-372.
    [20] LAVAIRE Nicolas.Study of the phenomena at the origin of the aging of steels for packing with “Ultra Low Carbon”(ULC):contribution of the thermo-electric capacity to the characterization of microstructure[D].Institute of Sciences Appliquees of Lyon,1999.
    [21] Bicha-benkirat D.Pouvoir thermoélectrique du fer et des alliages fer-azote et fer-carbone,thèse de doctorat[D].INSA de Lyon,1985:144-152.
    [22] RASHID M S.Strain-aging of vanadium,niobium or titanium-strengthened high-strength low-ally steels[J].Metallurgical Transactions A,1975,6:233-239.
    [23] 张骁勇,毕宗岳,高惠临,等.X80大变形管线钢的预应变脆化[J].焊管,2013,36(8):12-16.
    [24] 牛冬梅,王茂堂,何莹,等.大变形管线钢管应变时效硬化研究[J].焊管,2008,31(5):20-24.NIU Dongmei,WANG Maotang,HE Ying,et al.Study on strain aging hardening of large distortion steel[J].Welded Pipe and Tube,2008,31(5):20-24.
    [25] ISHIKAWA N,ENDO S,MURAOKA R.Microstructureal aspect of deform-ability of high strength linepipe steels[C].Proceedings of the 8th IUMRS International Conference on Advanced M-Aterials,YokohaM-A Japan,2003:48-55.
    [26] 刘莉,赵亚娟,王秀芳.高强度微合金管线钢中的M-A 岛对性能的影响[J].南钢科技与管理,2008(1):3-5.
    [27] SUZUKI N,TOYODA M.Seismic loading on buried pipelines and deform-ability of high strength linepipes[C].Proceedings of Pipeline Technology Conference,2004:601-628.
    [28] BALLIGER N K.Work hardening of dual-phase steels[J].Metal Science,1981(3):95-108.
    [29] CHEN Hongyuan,JI Lingkang,HUANG Chengshuai,et al.Analysis of bending test of 40-in X70 line pipe[C].Proceedings of the Twenty-second International Offshore and Polar Engineering Conference,Rhodes,Greece,June 17-22,2012.
    [30] 马鸣图,吴宝榕.双相钢-物理和力学冶金[M].北京:冶金工业出版社,1988.
    [31] 李鹤林.天然气输送钢管研究与应用中的几个热点问题[C].第五届全国设备维修与改造学术会议论文集,郑州,2002:38-52.
    [32] HIROSHL Yatabe.Effects of mechanical properties on the deforM-Ability of high grade linepipe[C].20th International Conference on Offshore Mechanics and Arctic Engineering,Brazil,2001:77-84.
    [33] 朱维斗.金属材料的均匀变性容量与变形硬化指数和屈强比的关系[C].石油管工程应用基础研究论文集,2001:161-166.
    [34] JI Lingkang,CHEN Hongyuan,HUO Chunyong,et al.Key issues in the specification of high strain line pipe used in strain-based designed districts of the 2nd west to east pipeline[IPC2008 64504][C].Proceedings of the 7th International Pipeline Conference,September 29-October 3,2008,Calgary,Alberta,Canada:695-703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700