考虑钢筋拉结作用的钢管混凝土节点抗连续倒塌机理分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Anti-progressive Collapse Mechanism of Concrete-filled Steel Tubular Structure Joints Considering the Rebar Tie Action
  • 作者:王景玄 ; 李秋颖 ; 杨永
  • 英文作者:WANG Jingxuan;LI Qiuying;YANG Yong;School of Civil Engineering, Lanzhou University of Technology;
  • 关键词:钢管混凝土 ; 抗连续倒塌 ; 拉结作用 ; 机理分析
  • 英文关键词:concrete filled steel tube(CFST);;progressive collapse;;tie action;;mechanism analysis
  • 中文刊名:ZBDZ
  • 英文刊名:China Earthquake Engineering Journal
  • 机构:兰州理工大学土木工程学院;
  • 出版日期:2019-06-15
  • 出版单位:地震工程学报
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目(51708270);; 兰州理工大学红柳优青人才支持计划
  • 语种:中文;
  • 页:ZBDZ201903002
  • 页数:7
  • CN:03
  • ISSN:62-1208/P
  • 分类号:19-25
摘要
地震、火灾和撞击等极端情况可能会引起建筑结构发生局部或者大范围的坍塌破坏。现有关于建筑结构抗连续倒塌研究主要考虑楼板对梁整体刚度的贡献,并未考虑板内钢筋的连续拉结作用,可能保守的评估了楼板对整体结构的抗连续倒塌贡献。因此,选取圆截面钢管混凝土组合节点为研究对象,基于ABAQUS软件建立板内钢筋端部不约束和约束两种不同边界条件的数值模型,分析竖向中柱失效工况下节点的破坏机理,对比不同约束条件下钢管混凝土节点的抗连续倒塌承载力计算曲线,观察板内钢筋约束条件下对该类节点梁机制和悬链线机制承载力的影响。研究结果表明:考虑板内钢筋单向拉结作用时,组合节点倒塌破坏分为:梁机制阶段、转化阶段、悬链线机制阶段和破坏阶段;对比两种不同约束条件下所得抗力曲线发现,考虑板内钢筋拉结作用时,梁机制承载力提高了7%左右,悬链线阶段承载力变化并不明显。
        Extreme disasters such as earthquakes, fires, and collisions can cause the partial or widespread collapse of building structures. Existing research on the resistance of building structures to progressive collapse has mainly considered the contribution of the slab to the beam stiffness, but not the continuous tension of the rebar, which implies that the contribution of the slab to the whole structure is conservatively evaluated. In this study, we selected as the research object the composite joints of a circular concrete-filled steel tubular structure. Using ABAQUS software, we established a numerical model with two different boundary conditions for the steel end in the plate. We analyzed the joint failure mechanism during failure of the vertical middle column and observed the influence of the constraint conditions of reinforcement in the plate on the bearing capacity of the joints' girder and catenary mechanisms. The results show that there are four stages in the joint collapse process: the beam mechanism, transformation mechanism, catenary mechanism, and failure stages. By comparing the resistance curves under two different constraint conditions, we found that the bearing capacity of the beam mechanism is increased by about 7% when considering the tensile action of reinforcement in the plate, whereas the bearing capacity of the catenary stage is not obvious.
引文
[1] 王景玄,王文达,石晓飞,等.基于备用荷载路径法的钢管混凝土框架抗连续倒塌机制非线性动力分析[J].建筑结构学报,2015,36(增刊1):14-20.WANG Jingxuan,WANG Wenda,SHI Xiaofei,et al.Nonlinear Dynamic Progressive Collapse Analysis of Composite Frame with Concrete-Filled Steel Tubular Columns Based on ALP Method[J].Journal of Building Structures,2015,36(Supp.1):14-20.
    [2] 中国工程建设标准化协会.CECS392:2014.建筑结构抗连续倒塌设计规范[S].北京:中国计划出版社,2015.CECS392:2014.Code for Anti-collapse Design of Building Structures[S].Beijing:China Planning Press,2015.
    [3] REN P Q,LI Y,LU X Z,et al.Experimental Investigation of Progressive Collapse Resistance of One-Way Reinforced Concrete Beam-Slab Substructures under a Middle-Column-Removal Scenario[J].Engineering Structures,2016,118:28-40.
    [4] 孟宝,钟炜辉,郝际平,等.基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J].工程力学,2018,35(6):88-96.MENG Bao,ZHONG Weihui,HAO Jiping,et al.Experimental Study on Anti-Collapse Performance for Beam-To-Column Assemblies of Steel Frame Based on Joint Stiffness[J].Engineering Mechanics,2018,35(6):88-96.
    [5] YANG B,TAN K H.Experimental Tests of Different Types of Bolted Steel Beam-Column Joints under a Central-Column-Removal Scenario[J].Engineering Structures,2013,54:112-130.
    [6] 张正,梁兴文,陆婷婷,等.不同柱梁抗弯承载力比对框架结构抗倒塌性能的影响[J].地震工程学报,2017,39(5):859-869.ZHANG Zheng,LIANG Xingwen,LU Tingting,et al.Effect of Different Ratios of Column-To-Beam Flexural Strength on Seismic-Collapse Resistance Behavior of Frame Structures[J].China Earthquake Engineering Journal,2017,39(5):859-869.
    [7] 包超,张尚荣,马肖彤,等.不规则性对基础隔震结构抗连续倒塌性能影响研究[J].地震工程学报,2018,40(3):480-489.BAO Chao,ZHANG Shangrong,MA Xiaotong,et al.Effect of Irregularity on the Progressive Collapse Resistance of Base-Isolated Structures[J].China Earthquake Engineering Journal,2018,40(3):480-489.
    [8] KANG S B,TAN K H,LIU H Y,et al.Effect of Boundary Conditions on the Behaviour of Composite Frames Against Progressive Collapse[J].Journal of Constructional Steel Research,2017,138:150-167.
    [9] 高佳明,刘伯权,黄华,等.考虑现浇板作用的钢筋混凝土框架结构抗连续倒塌性能试验[J].长安大学学报(自然科学版),2017,37(6):54-62.GAO Jiaming,LIU Boquan,HUANG Hua,et al.Experiment on Anti-Progressive Collapse Performance of RC Space Frame Considering the Effect of Cast-In-Place Slabs[J].Journal of Chang’an University (Natural Science Edition),2017,37(6):54-62.
    [10] MENG B,ZHONG W H,HAO J P.Anti-Progressive Collapse Behavior of Beam-To-Column Assemblies with Bolted-Angle Connections under Different Span Ratios[J].Advances in Structural Engineering,2018,21(6):891-905.
    [11] QIAN K,LIU Y,YANG T,et al.Progressive Collapse Resistance of Posttensioned Concrete Beam-Column Subassemblages with Unbonded Posttensioning Strands[J].Journal of Structural Engineering,2018,144(1):1-12.
    [12] 钱凯,罗达,贺盛,等.钢筋混凝土框架结构底部相邻两柱失效的抗连续倒塌性能研究[J].建筑结构学报,2018,39(1):61-68.QIAN Kai,LUO Da,HE Sheng,et al.Progressive Collapse Performance of Reinforced Concrete Frame Structures Subjected to Ground Two-Column Removal Scenario[J].Journal of Building Structures,2018,39(1):61-68.
    [13] WANG W D,LI H W,WANG J X.Progressive Collapse Analysis of Concrete-Filled Steel Tubular Column to Steel Beam Connections Using Multi-Scale Model[J].Structures,2017,9:123-133.
    [14] 王景玄,王文达,李华伟,等.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J].工程力学,2018,35(6):105-114.WANG Jingxuan,WANG Wenda,LI Huawei,et al.Refined Finite Element Analysis of Progressive Collapse of Planar Frames with Concrete-Filled Steel Tubular Columns[J].Engineering Mechanics,2018,35(6):105-114.
    [15] GSA 2003.Progressive Collapse ADnalysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S].Washington,D.C.:The U.S.General Services Administration,2003.
    [16] 韩林海.钢管混凝土结构—理论与实践[M].北京:科学出版社,2004.HAN Linhai.Concrete Filled Steel Tubular Structure-Theory and Practice[M].Beijing:Science Press,2004.
    [17] 混凝土结构设计规范:GB50010-2010[S].北京:中国建筑工业出版社,2010.Code for Design of Concrete Structures:GB 50010-2010[S].Beijing:China Architecture & Building Press,2010.
    [18] Esmaeily A,Xiao Y.Behavior of Reinforced Concrete Columns under Variable Axial Loads:Analysis[J].ACI Structure Journal,2005,102(5):736-744.
    [19] KIM J,SHIN W S.Retrofit of RC Frames Against Progressive Collapse Using Prestressing Tendons[J].The Structural Design of Tall and Special Buildings,2013,22(4):349-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700