涡轮泵流体静压轴承性能计算与试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance calculation and experimental study on a hydrostatic journal bearing for turbopumps
  • 作者:杜家磊 ; 闫攀运 ; 梁国柱
  • 英文作者:DU Jialei;YAN Panyun;LIANG Guozhu;School of Astronautics,Beijing University of Aeronautics and Astronautics;
  • 关键词:液体火箭发动机 ; 涡轮泵 ; 流体静压轴承 ; 水润滑 ; 液氮润滑
  • 英文关键词:liquid rocket engine;;turbopump;;hydrostatic journal bearing;;water lubrication;;liquid nitrogen lubrication
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:北京航空航天大学宇航学院;
  • 出版日期:2017-10-17 18:37
  • 出版单位:北京航空航天大学学报
  • 年:2018
  • 期:v.44;No.300
  • 语种:中文;
  • 页:BJHK201802014
  • 页数:11
  • CN:02
  • ISSN:11-2625/V
  • 分类号:111-121
摘要
针对重复使用液体火箭发动机涡轮泵,设计了试验用流体静压轴承,利用不可压层流润滑雷诺方程的线性性质,对轴承液膜压力进行数值求解,计算分析了分别采用水和液氮作为润滑介质时,轴承的承载力和流量特性与偏心率和供给压力的关系;进行了轴承的节流孔流量特性和水润滑试验。结果表明:静压轴承短孔(非典型小孔)节流器的流量系数远超出常用的小孔节流器流量系数的参考范围;在相同的工况下,数值计算得到的水润滑和液氮润滑静压轴承的质量流量相差很小;高速水润滑试验中,主轴在轴承中浮起后的位置主要由供给压力决定,在0~30000 r/min的转速范围内轴承没有明显的动压效应;数值计算和试验结果均表明静压轴承的质量流量与偏心率基本无关。水和液氮润滑静压轴承性能数值计算和水润滑试验结果为进一步的液氮低温润滑试验奠定了基础。
        An experimental hydrostatic journal bearing intended for the reusable liquid rocket engine turbopump was designed and investigated through numerical calculation and experiments. The Reynolds equation for incompressible laminar fluid was numerically solved based on its linear characteristic and the static performance( load capacity and mass flow rate) of the bearing lubricated with water and liquid nitrogen versus eccentricity ratio and supply pressure was calculated and analyzed. The flow characteristic of the bearing restrictor was studied through experiment and the bearing lubricated with water was also tested. The flow characteristic experiment of the restrictor shows that the flow coefficient of this non-typical restrictor is much larger than that of orifice restrictors. The numerical results show that the mass flow rates of the bearing lubricated with water and liquid nitrogen are very close to each other under the present research condition. The high-speed water lubrication experiment indicates that the equilibrium position of the shaft in the bearing is mainly determined by the supply pressure and the bearing shows no obvious hydrodynamic effect in the speed range of 0 ~ 30 000 r/min. Both numerical and experimental results show that the mass flow rate of the hydrostatic journal bearing is largely independent of the eccentricity ratio. The numerical results of the bearing lubricated with water and liquid nitrogen,together with the water lubrication experimental results provide a reference for further cryogenic lubrication experiments.
引文
[1]VAN HOOSER K,BRADLEY D P.Space shuttle main enginethe relentless pursuit of improvement:AIAA-2011-7159[R].Reston:AIAA,2011.
    [2]王松岭,张建斌.浅谈发动机涡轮泵动静压轴承研究状况[J].机械制造与自动化,2006,35(3):7-8.WANG S L,ZHANG J B.Discussion of the research status of hybrid bearing on LH2/LO2 engine turbopump of rocket[J].Machine Building&Automation,2006,35(3):7-8(in Chinese).
    [3]苗旭升,李斌,黄智勇.发动机涡轮泵流体动静压轴承应用分析[J].火箭推进,2004,30(6):1-4.MIAO X S,LI B,HUANG Z Y.Application analysis of liquid hybrid bearing for engine turbopumps[J].Journal of Rocket Propulsion,2004,30(6):1-4(in Chinese).
    [4]REDDECLIFF J M,VOHR J H.Hydrostatic bearings for cryogenic rocket engine turbopumps[J].Journal of Lubrication Technology,1969,91(3):557-575.
    [5]SAN ANDRES L,CHILDS D,YANG Z.Turbulent-flow hydrostatic bearings:Analysis and experimental results[J].International Journal of Mechanical Sciences,1995,37(8):815-829.
    [6]YANG Z,SAN ANDRES L,CHILDS D W.Thermal effects in liquid oxygen hydrostatic journal bearings[J].Tribology Transactions,1996,39(3):654-662.
    [7]OHTA T,KITAMURA A,OGATA H.LH2 turbopump test with hydrostatic bearing[C]∥35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston:AIAA,1999:1-6.
    [8]EDELINE E,FAYOLLE P,FONTEYN P,et al.Development and testing of a fluid film bearing LH2 turbopump demonstrator[C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston:AIAA,2004:1-7.
    [9]OIKE M,KIKUCHI M,TAKADA S,et al.Robustness of cryogenic hybrid journal bearings[J].Tribology Online,2012,7(3):171-178.
    [10]戴学余,苗旭升,富彦丽,等.几种低粘度润滑介质下动静压轴承的性能分析[J].润滑与密封,2004(3):10-13.DAI X Y,MIAO X S,FU Y L,et al.Analysis of a hybrid bearing with several low-viscosity fluids[J].Lubrication Engineering,2004(3):10-13(in Chinese).
    [11]张国渊,袁小阳,苗旭升,等.水润滑高速动静压轴承试验研究[J].摩擦学学报,2006,26(3):238-241.ZHANG G Y,YUAN X Y,MIAO X S,et al.Experiment for water-lubricated high-speed hydrostatic journal bearings[J].Tribology,2006,26(3):238-241(in Chinese).
    [12]张国渊,袁小阳.基于混合均质模型的气液两相流润滑动静压轴承性能分析[J].低温工程,2010(2):8-13.ZHANG G Y,YUAN X Y.Performance analysis of hybrid journal bearings in two phase flow based on liquid-vapor mixture model[J].Cryogenics,2010(2):8-13(in Chinese).
    [13]张直明.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社,1986:46-63.ZHANG Z M.Hydrodynamic lubrication theory of sliding bearings[M].Beijing:Higher Education Press,1986:46-63(in Chinese).
    [14]闫攀运,梁国柱.POWELL优化算法在混合气体轴承数值计算中的应用[J].润滑与密封,2013,38(8):96-100.YAN P Y,LIANG G Z.Application of POWELL optimization algorithm in numerical calculation of hybrid gas bearing[J].Lubrication Engineering,2013,38(8):96-100(in Chinese).
    [15]CASTELLI V,SHAPIRO W.Improved method for numerical solutions of the general incompressible fluid film lubrication problem[J].Journal of Lubrication Technology,1967,89(2):211-218.
    [16]陈国邦,包锐,黄永华.低温工程技术:数据卷[M].北京:化学工业出版社,2005:41-42.CHEN G B,BAO R,HUANG Y H.Cryogenic engineering technology:Data volume[M].Beijing:Chemical Industry Press,2005:41-42(in Chinese).
    [17]闻邦椿.机械设计手册[M].北京:机械工业出版社,2010:13-82.WEN B C.Machine design handbook[M].Beijing:China Machine Press,2010:13-82(in Chinese).
    [18]詹永麒.液压传动[M].上海:上海交通大学出版社,1999:28.ZHAN Y Q.Hydraulic transmission[M].Shanghai:Shanghai Jiao Tong University Press,1999:28(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700