分布式光伏能源驱动冰蓄冷空调系统特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance Analysis of Ice Refrigeration Air Conditioning System Driven by Distributed Photovoltaic Energy System
  • 作者:徐永锋 ; 韩雷涛 ; 孙如军 ; 王锐
  • 英文作者:XU Yong-feng;HAN Lei-tao;SUN Ru-jun;WANG Rui;National Center for Quality Inspection of Medium-Low Temperature Solar Products(Zhejiang);Shcool of Mechanical and Electronic Engineering,Dezhou University;
  • 关键词:太阳能 ; 分布式光伏能源 ; COP ; 优化
  • 英文关键词:solar energy;;distributed photovoltaic energy;;COP;;optimization
  • 中文刊名:DZHX
  • 英文刊名:Journal of Dezhou University
  • 机构:国家中低温太阳能产品质量检验中心(浙江);德州学院机电工程学院;
  • 出版日期:2016-12-28 15:35
  • 出版单位:德州学院学报
  • 年:2016
  • 期:v.32;No.150
  • 基金:山东省自然科学基金项目(ZR2015EL038);山东省自然科学基金项目(ZR2014EL031)
  • 语种:中文;
  • 页:DZHX201606006
  • 页数:7
  • CN:06
  • ISSN:37-1372/Z
  • 分类号:25-30+35
摘要
构建了0.2kW分布式光伏能源驱动冰蓄冷空调系统,并对其能量转化传递特性开展研究.研究结果表明,光伏阵列光电转换效率的最大值为17.58%,制冷机组COP最大值为0.51,整个系统能量利用率的最大值为8.34%,白天8h的制冰量为16.98kg,晚上可供10m2办公室供冷4h.对系统部件能量传递分析表明,片冰滑落式的制冰过程能量浪费较大.因此,将盘式蒸发器优化为盘管式蒸发器浸入式静态制冰,制冰机COP达到0.71,提高了近40%.
        A 0.2kW ice refrigeration air conditioning system driven by distributed photovoltaic energy system was proposed and the energy conversion transmission characteristics have been investigated in this paper.The results showed that the maximum value of the system energy utilization rate was 8.34%.The maximum value of the photoelectric conversion efficiency of photovoltaic array was 17.58% and the COP of refrigerator was 0.51.The ice produce was 16.98 kg during 8hours in daytime,and which could service10m2 office for 4hours in night.The analysis results about energy transmission among every parts showed that there are much energy waste in the ice making process due to the ice slide type ice making model.Therefore,the disc evaporator was optimized to the coil evaporator which was immersed in the water tank called static ice making model.The COP of optimized refrigerator was 0.71,which was improved nearly by 40%.
引文
[1]Allouhi A..Solar driven cooling systems:An updated review[J].Renewable and Sustainable Energy Reviews,2015,44:159-181.
    [2]Ghafoor,Munir A.Worldwide overview of solar thermal cooling technologies[J].Renewable and Sustainable Energy Reviews,2015,43:763-774.
    [3]Du S,Wang R Z,Xia Z Z.Graphical analysis on internal heat recovery of a single stage ammonia-water absorption refrigeration system[J].Energy,2015,80:687-694.
    [4]Xu Z Y,Wang R Z.Experimental verification of the variable effect absorption refrigeration cycle[J].Energy 2014,77:703-709.
    [5]Xu Ji,Ming Li,Fan,Jieqing,Zhang Peng,Luo Bin,Wang Liuling.Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system[J].Applied energy,2014,113:1293-1300.
    [6]Mehmet Azmi Aktacir.Experimental study of a muftipurpose PV-refrigerator system[J].International Journal of Physical Sciences,2011,6(4):746-757.
    [7]Ekren O.Experimental performance evaluation of a PV Powered refrigeration system[J].IEEE Elektronika irelektrotechnika,2011,114(8):7-10.
    [8]Bilgili Mehmet.Hourly simulation and performance of solar electric-vapor compression refrigeration system[J].Solar Energy,2011,85(1):2720-2730.
    [9]Petros J.Axaopoulos,Michael P.Theodoridis.Design and experimental performance of a PV Ice-maker without battery[J].Solar Energy,2009,83(1):1360-1369.
    [10]刘群生.太阳能光伏直流冰箱的能量管理和系统匹配研究[M].上海:上海交通大学,2007.
    [11]刘群生,付鑫,张鹏,等.太阳能光伏直流冰箱系统性能研究[J].太阳能学报,2007,28(2):184-188.
    [12]刘忠宝,杨双,刘挺.太阳能光伏直流蓄冷冰箱系统的实验研究[J].太阳能学报,2012,33(5):795-800.
    [13]陈观生.基于光伏电池和直流压缩机的太阳能冰箱可行性分析[J].广东工业大学学报,2006,23(2):38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700