MWCNT-H_2O纳米流体对静态真空闪蒸制冰实验的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of ice-making for static vacuum flash system with MWCNT-H_2O nanofluid
  • 作者:王章飞 ; 章学来 ; 贾潇雅 ; 甘伟 ; 韩兴超 ; 陈跃
  • 英文作者:WANG Zhangfei;ZHANG Xuelai;JIA Xiaoya;GAN Wei;HAN Xingchao;CHEN Yue;Institute of Cool Storage Technology,Shanghai Maritime University;
  • 关键词:纳米粒子 ; 吸附 ; 静态制冰 ; 含冰率 ; 闪蒸率 ; 相变
  • 英文关键词:nanoparticles;;absorption;;static ice-making system;;ice packing factor;;flash evaporating rate;;phase change
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:上海海事大学蓄冷技术研究所;
  • 出版日期:2018-07-05
  • 出版单位:化工进展
  • 年:2018
  • 期:v.37;No.322
  • 基金:国家自然科学基金(51376115);; 上海海事大学研究生学术新人培育项目
  • 语种:中文;
  • 页:HGJZ201807009
  • 页数:8
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:82-89
摘要
在蒸馏水中加入多壁碳纳米管(MWCNT)纳米粒子,选用亲水性非离子型表面活性剂TNWDIS为分散剂。经过超声波震荡,配制分散均匀稳定的MWCNT-H_2O纳米流体。利用静态真空闪蒸实验台,设定系统压力为100Pa,研究在吸附作用下多壁碳纳米管纳米粒子浓度、粒径、TNWDIS与MWCNT配比对闪蒸制取冰浆实验的影响。结果表明,多壁碳纳米管的加入可消除闪蒸制冰的相变蓄冷阶段、缩短液相降温时间使流体更早出现过冷现象;20~40nm粒径的MWCNT纳米粒子使用TNWDIS进行分散,质量分数范围在0.075%~0.15%时多壁碳纳米管纳米流体分散均匀稳定、达到最佳效果,其中质量分数为0.1%的纳米流体最大降低水的过冷度达62.2%;过冷度随着MWCNT纳米粒子粒径的增大而升高,闪蒸率基本维持在40%,但含冰率呈现非线性变化;20~40nm粒径的MWCNT纳米粒子使用TNWDIS配制成质量分数为0.1%的纳米流体,TNWDIS与MWCNT的分散配比建议采用0.5∶1,过冷度基本维持在2℃。
        Multi-walled carbon nanotube(MWCNT)nanoparticles were added into distilled water with hydrophilic TNWDIS of nonionic-type as surfactant. In order to get the stable homogeneous dispersions of MWCNT-H_2O nanofluid,ultrasonic generator was used. Under the condition of 100 Pa and adsorption,the effects of nanofluid for different mass fractions,particle sizes of MWCNT and different ratios between MWCNT&TNWDIS on static vacuum flash characteristics of ice-making were studied. The results showed that the addition of MWCNT can eliminate the stage of phase-change and shorten the cooling time at the stage of liquid phase. So the supercooling phenomenon appeared earlier. The 20—40 nm MWCNT-H_2O nanofluid which the concentration ranges from 0.075% to 0.15% can be well-distributed by TNWDIS. When the concentration of MWCNT was 0.1%,the supercooling degree of water decreased by 62.2%,which reached the maximum reduction. The supercooling degree increased with the increase of particle size,while the flash evaporating rate remained at 40%. However,ice packing factor is varied nonlinearly. The optimal dispersive proportion of TNWDIS and 20—40 nm MWCNT is 0.5∶1. Under this dispersive proportion,the supercooling degree of 0.1% MWCNT-H_2O nanofluids remained at 2℃.
引文
[1]KAUFFELD M,WANG M J,GOLDSTEIN V,et al.Ice slurry applications[J].International Journal of Refrigeration,2010,33(8):1491-1505.
    [2]方贵银,邢琳,杨帆.动态冰浆蓄冷空调系统及特性[J].电力需求侧管理,2005,7(6):48-50,52.FANG G Y,XING L,YANG F.Dynamic ice slurries storage systems and its characteristics[J].Power Demand Side Management,2005,7(6):48-50,52.
    [3]董昕玥.真空制冰矿井降温输冰关键技术的研究[D].武汉:理工大学,2013DONG X Y.Research on key technologies of transporting ice in vacuum ice for deep mine cooling[D].Wuhan:Wuhan University of Technology,2013
    [4]张皖君,蓝蔚青,肖蕾,等.流化冰在水产品保鲜中的应用研究进展[J].食品与机械,2016(7):214-218.ZHANG W Q,LAN W Q,XIAO L,et al.Progress on application research of fresh ice for aquatic products preservation[J].Food&Machinery,2016(7):214-218.
    [5]刘圣春,李叶,饶志明.冰浆性能分析及其在食品冷冻冷藏中的应用[J].食品工业,2013,34(5):152-156.LIU S C,LI Y,RAO Z M,et al.The analysis of ice slurry performance and its application in food frozen storage[J].Food Industry,2013,34(5):152-156.
    [6]郝玲,刘圣春,杨旭凯,等.动态冰浆的应用及制取方法的现状及展望[J].制冷与空调,2014,14(11):1-10.HAO L,LIU S C,YANG X K,et al.The present situation and outlook about application fields and generation methods of ice slurry[J].Refrigeration and Air-Conditioning,2014,14(11):1-10
    [7]SATOH I,FUSHINOBU K,HASHIMOTO Y.Freezing of a water droplet due to evaporation-heat transfer dominating the evaporation-freezing phenomena and effect of boiling on freezing characteristics[J].International Journal of Refrigeration,2002,25(1):226-234.
    [8]SATOH I,SATO T,SHIMA K.Performance of the cold transport system utilizing evaporation-freezing phenomenon with a cold trap[J].International Journal of Refrigeration,2004,27(3):387-393.
    [9]KIM B S,SHIN H T,LEE Y P,et al.Study on ice slurry production by water spray[J].International Journal of Refrigeration,2001,24(2):176-174.
    [10]SHIN H T,LEE Y P,JURNG J.Spherical-shaped ice particle production by spraying water in a vacuum chamber[J].Applied Thermal Engineering,2000,20(5):439-454.
    [11]徐爱祥.新型真空液滴制冰特性研究[D].长沙:中南大学,2010.XU A X.Characteristics on freezing of water droplet due to evaporation[D].Changsha:Central South University,2010.
    [12]宣益民.纳米流体能量传递理论与应用[J].中国科学(技术科学),2014,44(3):269-279.XUAN Y M.An overview on nanofluids and applications(in Chinese)[J].Sci.Sin.Tech.,2014,44(3):269-279.
    [13]李强.纳米流体强化传热机理研究[D].南京:南京理工大学,2004.LI Q.Investigation on enhanced heat transfer of nanofluids[D].Nanjing:Nanjing University of Science and Technology,2004
    [14]吴淑英,朱冬生,杨硕.Al2O3-H2O纳米流体的相变蓄冷实验研究[J].工程热物理学报,2009,30(6):981-983.WU S Y,ZHU D S,YANG S.Experimental study on phase change cool storage of Al2O3-H2O nanofluids[J].Journal of Engineering Thermophysics,2009,30(6):981-983.
    [15]杨波,王姣,刘军.碳纳米流体强化传热研究[J].强激光与粒子束,2014,26(5):21-23.YANG B,WANG J,LIU J.Heat transfer enhancement of carbon nanofluids[J].High Power Laser&Particle Beams,2014,26(5):21-23.
    [16]施赛燕,崔晓钰,周宇,等.石墨烯/去离子水纳米流体振荡热管传热性能[J].化工学报,2016,67(12):4944-4950.SHI S Y,CUI X Y,ZHOU Y,et al.Heat transfer performance of pulsating heat pipe with graphene aqueous nanofluids[J].CIESC Journal,2016,67(12):4944-4950.
    [17]徐会金,巩亮,黄善波,等.金属泡沫内纳米流体强化传热研究[J].工程热物理学报,2014,35(8):1586-1590.XU H J,GONG L,HUANG S B,et al.Heat transfer enhancement of nanofluid in metal foams[J].Journal of Engineering Thermophysics,2014,35(8):1586-1590.
    [18]刘玉东,李鑫.纳米流体的低温蓄冷释冷特性及其谷电蓄冷应用研究[J].中国电机工程学报,2015,35(11):2779-2787.LIU Y D,LI X.Cold charge and discharge characteristics of nanofluids and its application to ice storage using valley electricity[J].Proceedings of the CSEE,2015,35(11):2779-2787.
    [19]林灵楠,彭浩,丁国良,等.表面活性剂对纳米制冷剂颗粒团聚的影响[J].工程热物理学报,2016,37(9):1968-1972.LIN L N,PENG H,DING G L,et al.Effect of surfactant on particle agglomeration in refrigerant-based nanofluids[J].Journal of Engineering Thermophysics,2016,37(9):1968-1972.
    [20]徐飞云,舒畅.静态升压法在冷媒加注中的检漏分析[J].机械制造,2012,50(6):56-59.XU F Y,SHU C.Analysis of leak detection in static pressing method for refrigerant charging[J].Machinery,2012,50(6):56-59.
    [21]李新,侯予,张兴群.冰浆流动及传热特性研究进展[J].制冷与空调,2007,7(4):15-18.LI X,HOU Y,ZHANG X Q.Study advance of flow behavior and heat transfer performance of ice slurry[J].Refrigeration and Air-Conditioning,2007,7(4):15-18.
    [22]AYEL V,LOTTIN O,PEERHOSSAINI H.Rheology flow behaviour and heat transfer of ice slurries:a review of the state of the art[J].International Journal of Refrigeration,2003,26(1):95-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700