丙烯酸羟乙酯/丙烯酰二甲基牛磺酸钠共聚物流变行为的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rheological Behavior of Hydroxyethylacrylate/Sodium Acryloyldimethyl Taurate Copolymer Aqueous Solution
  • 作者:陈璐 ; 张振华 ; 罗绍强 ; 高颖 ; 张晨 ; 胡流云 ; 杜淼 ; 宋义虎 ; 郑强
  • 英文作者:Lu Chen;Zhen-hua Zhang;Shao-qiang Luo;Ying Gao;Chen Zhang;Liu-yun Hu;Miao Du;Yi-hu Song;Qiang Zheng;Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization,Department of Polymer Science and Engineering,Zhejiang University;Infinitus(China) Company Ltd;Infinitus Company(China) Ltd;
  • 关键词:流变行为 ; 氢键作用 ; 疏水缔合 ; 静电相互作用
  • 英文关键词:Rheological behavior;;Hydrogen bonding interaction;;Hydrophobic association;;Electrostatic interaction
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:高分子合成与功能构造教育部重点实验室浙江大学高分子科学与工程学系;无限极(中国)有限公司;
  • 出版日期:2018-10-19 14:28
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金(基金号51673172)资助项目
  • 语种:中文;
  • 页:GFXB201901010
  • 页数:8
  • CN:01
  • ISSN:11-1857/O6
  • 分类号:99-106
摘要
考察了丙烯酸羟乙酯/丙烯酰二甲基牛磺酸钠共聚物(EMT-10)水溶液的流变行为.研究发现,在水溶性聚合物EMT-10中同时存在疏水缔合、氢键相互作用及静电相互作用,这3种作用使其水溶液流变行为变得复杂.分子内氢键及静电相互作用促进了分子内疏水缔合,使EMT-10水溶液在极低的浓度下显示出疏水微区.分子链间氢键、静电及疏水缔合的耦合形成分子间强相互作用,使EMT-10水溶液在亚浓非缠结区和缠结区,增比黏度(η_(ap))与浓度(c)之间的标度关系均远高于中性聚合物和聚电解质溶液,η_(ap)对c更为敏感.复杂的结构和多重相互作用使EMT-10水溶液在较高浓度下体现出二次屈服现象.同时,EMT-10水溶液的黏度对温度不敏感.表面活性剂、尿素、小分子盐均可使1.5 wt%EMT-10水溶液黏度降低,其中小分子盐影响最大.
        The rheological behaviors of hydroxyethylacrylate/sodium acryloyldimethyl taurate copolymer(EMT-10) in aqueous solution have been investigated systematically.EMT-10 has been widely used as a cosmetics thickener for its excellent emulsibility/stability at relatively low content;besides,its capability of persistent thickening effect over a broad variety of novel chemical structures is conducive to their perfect compatibility with specific active ingredients.Both pyrene fluorescence observation and rheological behavior revealed that hydrogen bonding and electrostatic interactions could enhance the intramolecular hydrophobic associations among EMT-10 macromolecules in the solution system,which led to the formation of hydrophobic microdomains within EMT-10 molecules even at ultra-low concentration.In the meantime,EMT-10's thickening capability could be promoted by the synergism of these three interactions,i.e.,intermolecular hydrophobic associations,hydrogen bonding interaction,and electrostatic interaction.The viscosity of EMT-10 aqueous solution exhibited higher scaling value against concentration than neutral polymer and polyelectrolyte solutions did in the unentangled semidilute solution and entangled semidilute solution regions.Moreover,it was insensitive to temperature due to the counteracting effect between hydrophobic interaction and hydrogen bonding interaction.Yielding occurred when solution concentration was higher than 0.3 wt% and the yielding stress increased with mounting concentration.Dual yielding behaviors showed up at solution concentration above 1 wt%,of which the second yielding was related to the formation and breakup of clusters that resulted from intramolecular hydrophobic associations and hydrogen bonding interaction under high shearing.Various additives could affect the rheological behaviors of EMT-10 solution remarkably.Viscosity of 1.5 wt% EMT-10 solution decreased with the addition of surfactants,urea,and salt,among which salt exhibited a sharp reducing effect.Compared with poly(vinyl alcohol) and poly(ethylene oxide),EMT-10 implicated strong intermolecular interactions including chain entanglements,electrostatic interaction,hydrophobic interaction,and hydrogen bonding interaction.
引文
1Stern P.Rheol Acta,1988,27(4):448-448
    2Pickering S U.J Chem Soc,1907,91:2001-2021
    3Liu Yi(刘义),Gao Shun(高俊).China Surfac Deterg Cosmet(日用化学工业),2003,33(1):44-48
    4Long Chunxia(龙春霞),Liu Xiaomin(刘晓敏).China Surfac Deterg Cosmet(日用化学工业),2017,47(6):341-344
    5Kalyanasundaram K,Thomas J K.J Am Chem Soc,1977,99(7):2039-2044
    6Du M,Ma Y J,Su H,Wang X,Zheng Q.RSC Adv,2015,5(43):33905-33913
    7Su H,Wang X,Du M,Song Y H,Zheng Q.RSC Adv,2016,6(7):5695-5702
    8Cross M M.J Colloid Sci,1965,20(5):417-437
    9Dou S,Colby R H.J Polym Sci,Part B:Polym Phys,2006,44(14):2001-2013
    10Konop A J,Colby R H.Langmuir,1999,15(1):58-65
    11Emady H,Caggioni M,Spicer P.J Rheol,2013,57(6):1761-1772
    12Pierre-Gilles de Gennes.Scaling Concepts in Polymer Physics.Ithaca:Cornell University Press,1979.221-222
    13Gouveia L M,Muller A J.Rheol Acta,2009,48(2):163-175
    14Aditya J,Wee M,Matia-Merino L,Goh K K T,McKinley G H.Carbohydr Polym,2015,123:136-145
    15Terech P,Dourdain S,Maitra U,Bhat S.J Phys Chem B,2009,113(14):4619-4630
    16Williams P A.Food Emulsions:Principles,Practice,and Techniques.Oxford:Blackwell Science Ltd.223-224
    17Goddard E D,Hannan R B.J Am Oil Chem Soc,1997,54(12):561-566
    18Vakarelski I U,Brown S C,Rabinovich Y I,Moudgil B M.Langmuir,2004,20(5):1724-1731
    19Ye Weijuan(叶维娟),Lv Weiyang(吕维扬),Mei Qingqing(梅清青),Fu Huakang(傅华康),Du Miao(杜淼),Zheng Qiang(郑强).Acta Polymerica Sinica(高分子学报),2015,(10):1216-1222
    20Wu Xia(武侠),Kong Xiangping(孔祥平),Wang Juan(王娟).Appl Chem Ind(应用化工),2012,41(5):791-793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700