非热等离子体强化尿素-SCR脱除NO_x
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:REMOVAL OF NO_x BY NON-THERMAL PLASMA ENHANCED UREA-SCR
  • 作者:樊星 ; 亢思静 ; 李坚 ; 安登飞
  • 英文作者:FAN Xing;KANG Si-jing;LI Jian;AN Deng-fei;Key Laboratory of Beijing on Regional Air Pollution Control,College of Environmental and Energy Engineering,Beijing University of Technology;Central Research Institute of Building and Construction Co.,Ltd;
  • 关键词:非热等离子体 ; MnO_x/Al_2O_3催化剂 ; 尿素 ; 低温SCR ; NO_x
  • 英文关键词:non-thermal plasma;;MnO_x/Al_2O_3 catalyst;;urea;;low-temperature SCR;;NO_x
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:北京工业大学环境与能源工程学院区域大气复合污染防治北京市重点实验室;中冶建筑研究总院有限公司;
  • 出版日期:2019-03-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.249
  • 基金:国家自然科学基金项目(21707004,51638001);; 北京市自然科学基金项目(8152011)
  • 语种:中文;
  • 页:HJGC201903022
  • 页数:6
  • CN:03
  • ISSN:11-2097/X
  • 分类号:121-126
摘要
针对低温条件下尿素-SCR存在的尿素分解不完全以及脱硝效率低的问题,利用介质阻挡放电产生非热等离子体,并将其与同时具有催化尿素分解和催化NO_x还原活性的MnO_x/Al_2O_3催化剂相结合,考察了非热等离子体对于低温(100℃)下尿素催化分解制氨以及NH_3-SCR和尿素-SCR脱除NO_x的强化作用。结果表明:仅有催化作用时100℃下尿素难以分解,NH_3-SCR也仅能脱除23. 0%的NO_x。在催化床层内施加较低放电功率(约10 W)的非热等离子体既可促使尿素在低温下高效分解制氨,又可显著强化NH_3-SCR对于NO的脱除,并最终在MnO_x/Al_2O_3催化剂表面实现尿素-SCR高效脱除NO。
        In order to solve the problems such as incomplete urea decomposition and low denitrification efficiency existing in urea-SCR at low temperatures,non-thermal plasma( NTP) was generated by dielectric barrier discharge and combined with MnO_x/Al_2 O_3 catalyst for both urea decomposition and NO_x reduction in this study. The effects of NTP on urea decomposition and NO_x removal by NH_3-SCR and urea-SCR were separately investigated at low temperature( 100 ℃). Experimental results showed that urea could not be effectively decomposed by catalysis under 100 ℃,and NO_x removal efficiency could only reach23. 0% by NH_3-SCR. Generation of NTP in the catalyst bed at low discharge power( ~ 10 W) could achieve effective production of ammonia from urea decomposition,and significantly promote the removal of NO by NH_3-SCR and eventually obtain efficient removal of NO by urea-SCR on the surface of MnO_x/Al_2 O_3 catalyst.
引文
[1]贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学,2007,28(6):1169-1177.
    [2] Hussain J,Palaniradja K,Algumurthi N,et al. Diesel engine emissions and after treatment techniques-a review[J]. Journal of Engineering Research and Studies,2012,3(2):34-44.
    [3] Bernhard A M,Peitz D,Elsener M,et al. Catalytic urea hydrolysis in the selective catalytic reduction of NOx:catalyst screening and kinetics on anatase Ti O2and Zr O2[J]. Catalysis Science&Technology,2013,3(4):942-951.
    [4] Piazzesi G,Nicosia D,Devadas M,et al. Investigation of HNCO adsorption and hydrolysis on Fe-ZSM5[J]. Catalysis Letters,2007,115(1/2):33-39.
    [5] Cheng X,Bi X. A review of recent advances in selective catalytic NOxreduction reactor technologies[J]. Particuology,2014,16:1-18.
    [6] Guan B,Zhan R,Lin H,et al. Review of state of the art technologies of selective catalytic reduction of NOxfrom diesel engine exhaust[J]. Applied Thermal Engineering, 2014, 66(1/2):395-414.
    [7] Wang T,Wan Z T,Yang X C et al. Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the fast SCR reaction[J]. Fuel Processing Technology,2018,169:112-121.
    [8] Yang W J,Chen Z C,Zhou J H,et al. Catalytic performance of zeolites on urea thermolysis and isocyanic acid hydrolysis[J].Industrial&Engineering Chemistry Research,2011,50(13):7990-7997.
    [9] Li G H,Jones C A,Grassian V H,et al. Selective catalytic reduction of NO2with urea in nanocrystalline Na Y zeolite[J].Journal of Catalysis,2005,234(2):401-413.
    [10] Johar J S. An experimental investigation of the urea-water decomposition and selective catalytic reduction(SCR)of nitric oxides with urea using V2O5-WO3-Ti O2catalyst[J]. Applied Energy,2005,158(21):631-642.
    [11]管斌,林赫,程琪,等.低温等离子体协同NH3-SCR去除柴油机NOx研究[J].工程热物理学报,2010,31(10):1767-1771.
    [12]程琪,管斌,林赫,等.等离子体辅助NH3-SCR去除柴油机NOx的试验研究[J].车用发动机,2010(1):33-36.
    [13] Yim S D,Kim S J,Baik J H,et al. Decomposition of urea into NH3for the SCR process[J]. Industrial&Engineering Chemistry Research,2004,43(16):4856-4863.
    [14] Mizuno A. Generation of non-thermal plasma combined with catalysts and their application in environmental technology[J].Catalysis Today,2013,211:2-8.
    [15] Fan X,Zhu T L,Wang M Y,et al. Removal of low-concentration BTX in air using a combined plasma catalysis system[J].Chemosphere,2009,75(10):1301-1306.
    [16] Fan X,Zhu T L,Sun Y F,et al. The roles of various plasma species in the plasma and plasma-catalytic removal of lowconcentration formaldehyde in air[J]. Journal of Hazardous Materials,2011,196:380-385.
    [17] Van Durme J,Dewulf J,Leys C,et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:a review[J]. Applied Catalysis B:Environmental,2008,78(3/4):324-333.
    [18] Czekaj I,Krocher O. Decomposition of urea in the SCR process:combination of DFT calculations and experimental results on the catalytic hydrolysis of isocyanic acid on Ti O2and Al2O3[J].Topics in Catalysis,2009,52:1740-1745.
    [19] Miessner H,Francke K P,Rudolph R,et al. NOxremoval in excess oxygen by plasma-enhanced selective catalytic reduction[J].Catalysis Today,2002,75(1/2/3/4):325-330.
    [20] Guan B,Lin H,Cheng Q,et al. Removal of NOxwith selective catalytic reduction based on nonthermal plasma preoxidation[J].Industrial&Engineering Chemistry Research,2011,50(9):5401-5413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700