RGO/BaTiO_3复合材料的制备与性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of RGO/BaTiO_3 composites and property study
  • 作者:罗祖云 ; 林义 ; 张笛 ; 洪若瑜
  • 英文作者:LUO Zu-yun;LIN Yi;ZHANG Di;HONG Ruo-yu;College of Chemical Engineering,Fuzhou University;Zhicheng College,Fuzhou University;
  • 关键词:氧化石墨烯 ; 还原剂 ; RGO/BaTiO3复合材料 ; 介电性能
  • 英文关键词:graphene oxide;;reductant;;RGO/BaTiO3 composite material;;dielectric property
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:福州大学石油化工学院;福州大学至诚学院;
  • 出版日期:2019-03-28 16:52
  • 出版单位:现代化工
  • 年:2019
  • 期:v.39;No.391
  • 基金:科技部创新基金(11C26223204581);; 中央引导地方科技发展专项基金(83017078);; 福建省自然科学基金(2018J01431);; 福建省闽江学者奖励计划(闽人社批复[2016]149号);; 福建省中青年教师教育科研项目(JT180808);; 福州大学贵重仪器设备开放测试基金资助项目(2018T023);福州大学至诚学院院级课程改革项目(ZJ1835)
  • 语种:中文;
  • 页:XDHG201905033
  • 页数:5
  • CN:05
  • ISSN:11-2172/TQ
  • 分类号:147-151
摘要
采用改进的Hummer法制备氧化石墨烯(GO),以乙二醇为还原剂将GO还原得到RGO(Reduced graphene oxide),并通过物理共混法制备RGO/BaTiO3复合材料。采用扫描电镜、X射线衍射、傅里叶红外、介电性能测试仪等对其表面形貌、微观结构、介电性能进行了表征。结果表明,乙二醇为还原剂成功实现了GO的还原,且还原后的RGO有效提高了RGO/BaTiO3复合材料的介电性能。当RGO质量分数为0. 5%~0. 8%时,复合材料的介电常数高达140以上,比纯BaTiO3材料提高约1. 75倍,且介电损耗控制在0. 2~0. 45之间。
        The modified Hummer method is used to prepare graphene oxide(GO),and GO is reduced by ethylene glycol into RGO(reduced graphene oxide),then RGO/BaTiO_3 composite materials are prepared by blending RGO with BaTiO_3. The surface morphology,microstructure,dielectric properties of samples are characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier infrared(FT-IR) and dielectric performance tester. The results show that GO is reduced successfully with ethylene glycol as a reducing agent. RGO improves effectively the dielectric performance of RGO/BaTiO_3 composite materials.The dielectric constant of the composite materials that contains 0. 5%-0. 8% of RGO exceeds 140,approximately 1. 75 times higher than pure BaTiO_3,and the dielectric loss is controlled between 0. 2-0. 45.
引文
[1]Novoselovks,Geimak,Morozovsv,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5296):666-669.
    [2]Lei Lia,Peng Gaoa,Shili Gaia,et al. Ultra small and highly dispersed Fe3O4nanoparticles anchored on reduced graphene for supercapacitor application[J]. Electrochimica Acta,2016,190:566-573.
    [3]Yogita Taluja,Boddepalli SanthiBhushan,Shekhar Yadav. Defect and functionalized graphene for supercapacitor electrodes[J]. Superlattices and Microstructures,2016,98:306-315.
    [4]关恩昊,岳红彦,高鑫,等.二氧化钛-石墨烯复合材料的制备及在超级电容器中的应用[J].现代化工,2018,38(1):40-43.
    [5]Bae S,Kimh,Lee Y,et al.Roll-to-roll production of 30-inch grapheme films for transparent electrodes[J]. Nature Nanotechnology,2010,5(8):574-578.
    [6]Yang Juan,Tian Hangyu,Tang Jingjing. Self-assembled Ni Co2O4anchored reduced graphene oxide nanoplates as high performance anode materials for lithium ion batteries[J]. Applied Surface Science,2017,426:1055-1062.
    [7]Huang Min,Feng Miao,Li Haojie. Rapid microwave-assisted synthesis of SnO2quantum dots/reduced graphene oxide composite with its application in lithium ion battery[J]. Materials Letters,2017,209:260-263.
    [8]Liu Lianjun,Huang Xingkang,Guo Xiaoru. Decorating in situ ultrasmall tin particles on crumpled N-doped graphene for lithium-ion batteries with a long life cycle[J].Power Sources,2016,328:482-49.
    [9]Jiao Jiqing,Qiu Wenda,Tang Jianguo. Synthesis of well-defined Fe3O4nanorods/N-doped graphene for lithium-ion batteries[J].Nano Research,2016,9(5):1256-1266.
    [10]Zahra Arefinia,Asghar Asgari. An analytical model for optimizing the performance of graphene based silicon Schottky barrier solar cells[J].Materials Science in Semiconductor Processing,2015,35:181-188.
    [11]Agnieszka Iwan,Felipe Caballero-Briones,Marek Malinowski. Graphene oxide influence on selected properties of polymer fuel cells based on Nafion[J]. International journal of Hydrogen Energy,2017,42:15359-15369.
    [12]Jee Y,Karimaghaloo A,Macedo Andrade A.Graphene-based oxygen reductionelectrodes for low temperature solid oxide[J].Fuel Cells,2017,3:344-352.
    [13]Dimitar Dimov,Iddo Amit,Olivier Gorrie,et al. Ultrahigh performance nanoengineered graphene-concrete composites for multifunctional applications[J].Advanced Functional Materials,2018,1705183:1-12.
    [14]Fernando Vallejos-Burgos, Franois-Xavier Coudert, Katsumi Kaneko.Air separation with graphene mediated by nanowindow-rim concerted motion[J].Nat Commun,2018,9(1812):1-9.
    [15]张神曼,孙豫,孙万虹,等。石墨烯改性材料在气体吸附分离方面的研究进展[J].现代化工,2018,38(6):38-42.
    [16]Yang Zhen,Pang Yu,Han Xiaolin,et al. Graphene textile strain sensor with negative resistance variation for human motion detection[J].ACS Nano,2018,12(9):9134-9141.
    [17]全学军,蒲昌亮.钛酸钡的制备研究进展[J].材料导报,2002,14(4):129-132.
    [18]贺刚.纳米钛酸钡的研究进展[J].中国科技信息,2009,25(2):234-237.
    [19]张亮,肖定全.高性能钛酸钡/聚合物复合材料的研究进展[J].功能材料,2012,23(1):72-79.
    [20]Zhu Z,Sun X,Xue H,et al. Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C,2014,2(32):6582-6591.
    [21]Fu M,Jiao Q,Zhao Y,et al.Vapor diffusion synthesis of CoFe2O4hollow sphere/grapheme composites absorbing materials[J].Journal of Materials Chemistry A,2014,2(3):735-744.
    [22]Bhattacharya P,Dhibar S,Hatui G,et al.Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper:A potential candidate for electromagnetic wave absorbing and energy storage device application[J].RSC Advance,2014,4(33):17039-17053.
    [23]王增奎,张国喜,刘聿成,等.化学剥离制备氧化石墨烯及表征[J].航天制造技术,2013,(5):28-30.
    [24]马文石,周俊文,程顺喜.石墨烯的制备与表征[J].高校化学工程学报,2010,24(4):719-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700