侧向安全边界理论在圆曲线路段限速中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Setting speed limit for horizontal circular curve of mountain highway using lateral safety boundary theory
  • 作者:陈一锴 ; 史婷 ; 石琴 ; 王长君 ; 李平凡
  • 英文作者:CHEN Yikai;SHI Ting;SHI Qin;WANG Changjun;LI Pingfan;School of Automotive and Transportation Engineering, Hefei University of Technology;Traffic Management Research Institute of the Ministry of Public Security;
  • 关键词:失稳模式 ; 侧向安全边界 ; 圆曲线路段 ; 限速 ; 非线性耦合模型
  • 英文关键词:instability mode;;lateral safety boundaries;;circular curve segment;;speed limit;;nonlinear coupling model
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:合肥工业大学汽车与交通工程学院;公安部交通管理科学研究所;
  • 出版日期:2019-03-11 14:18
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金青年科学基金(51305117);国家自然科学基金重点项目(71431003);; 中央高校基本科研业务费专项资金(JZ2017HGTB0212)
  • 语种:中文;
  • 页:HEBX201903026
  • 页数:7
  • CN:03
  • ISSN:23-1235/T
  • 分类号:185-191
摘要
针对现有公路限速策略无法准确反映几何线形、路面附着条件对汽车侧向稳定性影响的问题,将圆曲线路段汽车侧向失稳状态解耦为3种失稳模式,推导各失稳模式安全边界的精确计算方法,提出有效保障行车安全的限速值.首先,分析汽车传统侧向稳定性评价指标—横向力系数的不足,将失稳状态解耦为转向失稳、失去轨迹保持能力、侧翻3种模式,提出各模式的汽车安全性评价指标.然后,构建7自由度非线性整车-圆曲线路段耦合模型,通过理论推导、回归拟合得到各评价指标安全边界的计算模型.然后,采用Carsim仿真验证不同附着系数路面下各指标安全边界的准确性.最后,基于7自由度非线性车-路耦合模型和安全边界计算模型,通过Simulink仿真得到公路圆曲线路段临界安全车速,比较该策略与运行速度、设计速度等限速策略的差异.结果表明:当路面干燥、潮湿时,采用设计速度限速过于保守;当路面潮湿、积雪时,运行速度往往大于临界安全车速,应降低限速值,以保障行车安全.所提出的限速策略充分考虑了汽车侧向运动的非线性特征,可作为面向驾驶期望、通行效率等山区公路限速策略的有益补充.
        Existing speed limit strategies cannot reflect the effects of geometric alignments and the road friction condition on vehicle lateral stability precisely. Regarding this issue, the lateral instability of vehicle running on circular curve segment was decoupled into three instability modes. A precise method for calculating the safety boundary of each mode was presented, and the maximum speed which ensures vehicle lateral stability was deduced. Firstly, the drawbacks of the traditional lateral stability indicator, i.e., the side friction factor, were analyzed. The instability status was decoupled as steering instability, losing track-holding capacity, and rollover, and the corresponding safety evaluation indices were proposed. Secondly, a 7 degree-of-freedom(DOF) nonlinear vehicle-circular highway segment coupling model was developed, with which the computational models within the safety boundaries of safety evaluation indices were deduced. Subsequently, the accuracy of the safety boundaries were validated in various road friction conditions through the employment of Carsim. Finally, based on the 7 DOF nonlinear vehicle-road coupling model and the computational models of safety boundaries, the critical safe speeds for circular curves were deduced using MATLAB/Simulink, and the comparisons among the proposed method, the operating speed, and the design speed were made. The results indicate that design speed limit is too conservative on dry and wet pavement, while operating speed often exceeds critical safe speed on wet and icy pavement, which may cause safety issues. The speed limit strategy proposed in this paper fully considers the non-linearity of vehicle's lateral motion, and could be used as a complement for other speed limit strategies for mountain highway which takes driving expectancy and efficiency into account.
引文
[1] MONTELLA A, PUNZO V, CHIARADONNA S, et al. Point-to-point speed enforcement systems: speed limits design criteria and analysis of drivers’ compliance [J]. Transportation Research Part C:Emerging Technologies, 2015, 53(1):1. DOI: 10.1016/j.trc.2015.01.025
    [2] 聂进,吴京梅,吴玲涛,等.基于行人和自行车交通安全的城市道路限速值研究[J].中国公路学报,2014,27(7):91 NIE Jin, WU Jingmei, WU Lingtao, et al. Study on urban road speed limit for pedestrian and bicyclist traffic safety [J]. China Journal of Highway and Transport, 2014, 27(7):91
    [3] National Highway Traffic Safety Administration. Traffic safety facts: 2012 data [R]. Washington DC: National Highway Traffic Safety Administration, 2012
    [4] 公安部交通管理局.中华人民共和国道路交通事故统计年报(2016年度)[R].无锡:公安部交通管理科学研究所,2017 Traffic Management Bureau, the Public Security Ministry. Annual report on road traffic accidents in the People′s Republic of China (2016) [R]. Wuxi: Traffic Management Science Institute of Ministry of Public Security, 2017
    [5] FITZPATRICK C D, MCKINNON I A, TAINTER F T, et al. The application of continuous speed data for setting rational speed limits and improving roadway safety [J]. Safety Science, 2016, 85:171. DOI: 10.1016/j.ssci.2016.01.020
    [6] SRINIVASAN R, HARKEY D L, THARPE D, et al. Development of a web-based expert system for setting speed limits in speed zones [C]//Transportation Research Board 87th Annual Meeting. Washington DC: Transportation Research Board, 2008
    [7] 杨庆芳,马明辉,梁士栋,等.高速公路瓶颈区域可变限速阶梯控制方法[J].西南交通大学学报,2015,50(2):354.DOI: 10.3969/j.issn.0258.2015.02.023 YANG Qingfang, MA Minghui, LIANG Shidong, et al. Stair-like control strategies of variable speed limit for bottleneck regions on freeway [J]. Journal of Southwest Jiaotong University, 2015, 50(2):354. DOI: 10.3969/j.issn.0258-2724.2015.02.023
    [8] OH H, MUN S. Design speed based reliability index model for roadway safety evaluation [J]. KSCE Journal of Civil Engineering, 2012, 16(5):845. DOI: 10.1007/s12205-012-1469-9
    [9] DONNEL, E T, HIMES S C, MAHONEY K M, et al. Understanding speed concepts: key definitions and case study examples [J].Transportation Research Record Journal of the Transportation Research Board, 2009, 45(2120):3
    [10]WU K F, DONNELL E, HIMES S, et al. Exploring the association between traffic safety and geometric design consistency based on vehicle speed metrics [J]. Journal of Transportation Engineering, 2013, 139(7):738. DOI: 10.1061/(ASCE)TE.1943-5436.0000553
    [11]American Association of State Highway Transportation Officials. A policy on geometric design of highways and streets [S]. 6th ed. Washington DC: American Association of State Highway and Transportation Officials, 2011
    [12]DONNELL E, WOOD J, HIMES S, et al. Use of side friction in horizontal curve design: a margin of safety assessment [J]. Transportation Research Record Journal of the Transportation Research Board, 2016, 2588:61. DOI: 10.3141/2588-07
    [13]许建,张政,李翔,等.独立驱动电动汽车横摆力矩的模糊控制算法[J].西安交通大学学报,2014,48(7):83 XU Jian, ZHANG Zheng, LI Xiang, et al. A fuzzy control system for the direct yaw moment of 4WD electric vehicles [J]. Journal of Xi’an Jiaotong University, 2014, 48(7):83. DOI:10.7652/xjtuxb201407015
    [14]ZHANG B, DU H, LAM J, et al. A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle [J]. IEEE Transactions on Industrial Electronics, 2016, 63(7):4357. DOI: 10.1109/TIE.2016.2544244
    [15]郭景华,罗禹贡,李克强.智能车辆运动控制系统协同设计[J].清华大学学报(自然科学版),2015,55(7):761.DOI:10.16511/j.cnki.qhdxxb.2015.07.010 GUO Jinghua, LUO Yugong, LI Keqiang. Collaborative design of a motion control system for intelligent vehicles [J]. Journal of Tsinghua University (Science and Technology), 2015, 55(7):761. DOI: 10.16511/j.cnki.qhdxxb.2015.07.010
    [16]中国汽车技术研究中心.道路车辆外廓尺寸、轴荷及质量限值:GB 1589—2004[S].北京:中国标准出版社,2004 China Automotive Technology Research Center. Outline size, axle load and quality limit of road vehicles: GB 1589—2004[S]. Beijing: China Standard Press, 2004
    [17]曾小华,李广含,宋大凤,等.基于遗传算法优化的BP神经网络侧翻预警算法[J].华南理工大学学报(自然科学版),2017,45(2):30 ZENG Xiaohua, LI Guanghan, SONG Dafeng, et al. Rollover warning algorithm based on genetic algorithm-optimized BP neural network [J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(2):30. DOI: 10.3969/j.issn.1000.2017.02.005
    [18]余志生.汽车理论[M].5版.北京:机械工业出版社2009:144 YU Zhisheng. Automotive theory [M]. 5th ed. Beijing: Mechanical Industry Press, 2009: 144
    [19]CHEN Jie, SONG Jian, LI Liang, et al. A novel pre-control method of vehicle dynamics stability based on critical stable velocity during transient steering maneuvering [J]. Chinese Journal of Mechanical Engineering, 2016, 29(3):475. DOI: 10.3901/CJME.2016.0126.014
    [20]中华人民共和国交通运输部.公路工程技术标准:JTG B01—2014[S].北京:人民交通出版社,2014 The Ministry of Transportation of the People′s Republic of China. Technical standard of highway engineering: JTG B01—2014 [S]. Beijing: China Communication Press, 2014
    [21]Mechanical Simulation Corporation, CarSim Reference Manual Version 8.0: Driver Controls [M]. Michigan: Mechanical Simulation Corporation, 2009: 8
    [22]何杰,刘霞,陈一锴,等.恶劣天气路面条件对行车安全的影响[J].交通运输工程学报,2011(1):58 HE Jie, LIU Xia, CHEN Yikai, et al. Influence of road condition on running safety in atrocious weather [J]. Journal of Traffic and Transportation Engineering, 2011(1):58
    [23]SALIMI S, NASSIRI S, BAYAT A, et al. Lateral coefficient of friction for characterizing winter road conditions. [J]. Canadian Journal of Civil Engineering, 2015, 43(1):2355. DOI: 10.1139/cjce-2015-0222
    [24]华杰工程咨询有限公司.公路项目安全性评价规范: JTG B05—2015[S].北京:人民交通出版社股份有限公司,2016 CHELBI Engineering Consultants, Inc. Specification for highway safety audit: JTG B05—2015[S]. Beijing: China Communication Press, 2015

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700