电力复合脂分油率对接头端子温升的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Oil-separation Rate of Electric Compound Grease on Temperature Rise of Terminal Connectors
  • 作者:张雪松 ; 周立宪 ; 刘胜春 ; 司佳钧 ; 李冬青 ; 孙娜
  • 英文作者:ZHANG Xuesong;ZHOU Lixian;LIU Shengchun;SI Jiajun;LI Dongqing;SUN Na;China Electric Power Research Institute;
  • 关键词:电力复合脂 ; 分油率 ; 接头端子 ; 接触电阻 ; 温升 ; 有限元
  • 英文关键词:electric compound grease;;oil-separation rate;;terminal connector;;contact resistance;;temperature rise;;finite element
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:中国电力科学研究院有限公司;
  • 出版日期:2018-12-28 09:02
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.317
  • 基金:国家电网公司科技项目:±800 kV特高压直流换流站典型金具性能优化研究及工程应用(GC71-16-003)~~
  • 语种:中文;
  • 页:GDYJ201904026
  • 页数:7
  • CN:04
  • ISSN:42-1239/TM
  • 分类号:208-214
摘要
为了研究电力复合脂分油率对接头端子搭接部位温升的影响,在分析不同分油率电力复合脂对接头端子温升影响机理的基础上,对涂不同分油率电力复合脂的接头端子分别进行了试验研究及有限元计算,并建立了接头端子温升预测模型。研究结果表明:接头端子搭接部位的温升随时间呈指数上升趋势;分油率<3%的电力复合脂在常温及交变环境温度作用下均能够保持性能稳定,若接头端子搭接部位的电阻降低8%~14%,则温度降低6%~7%,接头端子温度呈搭接部位低非搭接部位高的分布形式,且该电力复合脂在接头端子搭接部位不均匀分布时其功效会降低;分油率>3%的电力复合脂常温下易发生劣化,在交变环境温度作用下劣化会加速,若接头端子搭接部位的电阻升高8%~47%,则温度升高3%~7%,接头端子温度呈搭接部位高非搭接部位低的分布形式。研究结果可为电力复合脂在特高压直流换流站中的应用提供参考。
        In order to study the effect of oil-separation rate of electric compound grease on temperature rise of overlapping parts of terminal connectors, the experimental study and finite element calculation on the terminal connectors with different oil-separation rates were carried out based on the effect mechanism of different oil-separation rates on the temperature rise of terminal connectors, and a temperature rise prediction model of terminal connectors was also established. The research results show that the temperature rise of the terminal connectors increase exponentially with time. The electric compound grease with less than 3% oil-separation rate can keep the performance stable at both room temperature and alternating temperatures,when the resistance of overlapping parts of terminal connectors decrease by 8%~14%, the temperature of overlapping parts of terminal connectors decrease by 6%~7%, and the temperature of overlapping parts of the terminal connectors are lower than that of non-lap parts of the terminal connectors, and the effects of the electric compound grease can be diluted somewhat when it is not evenly distributed at the position of overlapping parts. The electric compound grease with greater than 3%oil-separation rate can tend to deteriorate at room temperature and tend to accelerate degradation under the action of alternating ambient temperatures, the resistance of overlapping parts of terminal connectors increases by 8%~47%, and the temperature of overlapping parts of terminal connectors increase by 3%~7%. The temperature of overlapping parts of the terminal comectors are higher than that of non-lap parts of the terminal comectors. The research results can provide references for the application of electric composite grease in UHVDC converter station.
引文
[1]LUNIAK M,MONSER H P,BROD V,et al.Smart label uses polymer thick film technology on low-costsubstrates[C]∥First International IEEE Conferenceon on Polymers and Adhesives in Microelectronics and Photonics.Potsdam,Germany:IEEE,2001:314-318.
    [2]乔鹏,夏延秋,侯冲,等.含炭黑润滑脂的摩擦磨损与导电性能研[J].电力建设,2014,35(6):112-116.QIAO Peng,XIA Yanqiu,HOU Chong,et al.Tribological properties and conductivity of lubricating grease containing carbon black[J].Electric Power Construction,2014,35(6):112-116.
    [3]GE X Y,XIA Y Q,SHU Z Y.Conductive and tribological properties of lithium-based ionic liquids as grease base oil[J].Tribology Transactions,2015,58(4):686-690.
    [4]GE X Y,XIA Y Q,XIN F.Influence of carbon nanotubes on conductive capacity and tribological characteristics of poly(ethylene-glycol-ran-propylene glycol)monobutyl ether as base oil of grease[J].Journal of Hygiene Epidemiology Microbiology&Immunology,2015,138(1):396-397.
    [5]CAO Z F,XIA Y Q,GE X Y.Conductive capacity and tribological properties of several carbon materials in conductive greases[J].Industrial Lubrication and Tribology,2016,68(5):577-585.
    [6]胡亦超,夏延秋.导电聚苯胺在润滑脂中的导电能力及减摩抗磨性能的研究[J].机械工程学报,2017,53(21):109-117.HU Yichao,XIA Yanqiu.Conductivity and tribological properties of conductive polyaniline as additives in grease[J].Journal of Mechanical Engineering,2017,53(21):109-117.
    [7]王国刚.输变电设备电接触过热及劣化机理研究进展[J].电力建设,2013,34(10):24-28.WANG Guogang.Progress on electrical contact overheating and deterioration mechanisms of power transmission and transformation equipment[J].Electric Power Construction,2013,34(10):24-28.
    [8]SUN X B,WANG H W,WANG F.Reliability assessment for a certain type of electrical connector based on accelerated degradation data[J].Journal of Naval Aeronautical and Astronautical University,2014,7(5):67-71.
    [9]ZHOU Y L,LAN F D,KONG Z G.The effect of electrical joint compound on the life of aluminum power connector[C]//Prognostics&System Health Management Conference.Beijing,China:IEEE,2015:1-6.
    [10]YANG F,CHENG P,LUO H,et al.3-D thermal analysis and contact resistance evaluation of power cable joint[J].Applied Thermal Engineering,2016,93(1):1183-1192.
    [11]SUNG I H,KIM J W,NOH H J,et al.Effect of displacement and humidity on contact resistance of copper electrical contacts[J].Tribology International,2016,95(1):256-261.
    [12]王景朝,周立宪,司佳钧,等.基于温升试验的特高压换流站通流回路接头端子接触电阻经验公式参数推导研究[J].三峡大学学报,2017,39(2):74-78.WANG Jingchao,ZHOU Lixian,SI Jiajun,et al.Research on parameter deduction in contact resistance empirical formula of contact terminal in converter station based on large current temperature rise test[J].Journal of China Three Gorges University,2017,39(2):74-78.
    [13]张雪松,朱宽军,司佳钧,等.特高压直流换流站端子温升计算及影响因素[J].高电压技术,2018,44(4):1351-1358.ZHANG Xuesong,ZHU Kuanjun,SI Jiajun,et al.Temperature rise calculation of connector terminal in UHV DC converter station and analysis of influencing factors[J].High Voltage Engineering,2018,44(4):1351-1358.
    [14]葛翔宇,夏延秋,冯欣,等.锂盐型电力复合脂的导电性和摩擦学性能[J].机械工程学报,2015,51(15):61-66.GE Xiangyu,XIA Yanqiu,FENG Xin,et al.Electrical conductivities and tribological properties of lithium salts conductive grease[J].Journal of Mechanical Engineering,2015,51(15):61-66.
    [15]姚武,王瑞卿.基于隧道效应的OFRC材料的导电模型[J].复合材料学报,2006,23(5):121-125.YAO Wu,WANG Ruiqing.Conductivity model of carbon fiber rein-forced cement composite based on tunneling effect[J].Acta Materiae Compositae Sinica,2006,23(5):121-125.
    [16]王国刚,赵悅菊,舒宗英,等.离子液体在润滑脂中的导电性和摩擦学性能研究[J].润滑与密封,2016,41(3):118-122.WANG Guogang,ZHAO Yueju,SHU Zongying,et al.Conductivity and tribological performances of ionic liquid as base oil of greases[J].Lubrication Engineering,2016,41(3):118-122.
    [17]吴礼宁,夏延秋,冯欣,等.离子液体润滑脂导电性研究[J].摩擦学学报,2014,34(3):198-202.WU Lining,XIA Yanqiu,FENG Xin,et al.Electrical conductivity of ionic liquids as lubricating grease[J].Tribology,2014,34(3):198-202.
    [18]电力复合脂技术条件:Q/GDW 634-2011[S].北京:中国电力出版社,2011.Technical specifications for electrical joint compound:Q/GDW 634-2011[S].Beijing,China:China Electric Power Press,2011.
    [19]电力金具通用技术条件:GB/T 2314-2008[S].北京:中国标准出版社,2008.General technical requirements for electric Power Fittings:GB/T 2314-2008[S].Beijing,China:China Standards Press of China,2008.
    [20]梁永春.高压电力电缆温度场和载流量评估研究动态[J].高电压技术,2016,42(4):1142-1150.LIANG Yongchun.Technological development in evaluating the tempe-rature and ampacity of power cables[J].High Voltage Engineering,2016,42(4):1142-1150.
    [21]MALINOWSKI L,CHEN J H.Analytical solutions of the equations for the transient temperature field in the three-fluid parallel-channel heat exchanger with three thermal communications[J].International Journal of Heat and Mass Transfer,2016,96:164-170.
    [22]MURASHOV M V,PANIN S D.Numerical modelling of contact heat transfer problem with workhardened rough surfaces[J].International Journal of Heat and Mass Transfer,2015,90:72-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700