RSV-寄主-介体三者间相互作用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the tritrophic interactions of RSV-plant-vector
  • 作者:张坤 ; 徐红梅 ; 张定谅 ; 贺振 ; 刘芳
  • 英文作者:ZHANG Kun;XU Hongmei;ZHANG Dingliang;HE Zhen;LIU Fang;College of Horticulture and Plant Protection,Yangzhou University;
  • 关键词:水稻条纹病毒 ; 病毒-寄主-介体互作 ; siRNA ; 寄主因子
  • 英文关键词:Rice stripe virus;;virus-host-vector interactions;;siRNA;;host factors
  • 中文刊名:NYDX
  • 英文刊名:Journal of China Agricultural University
  • 机构:扬州大学园艺与植物保护学院;
  • 出版日期:2019-06-15
  • 出版单位:中国农业大学学报
  • 年:2019
  • 期:v.24
  • 基金:国家自然科学基金青年项目(31801699);; 江苏省自然科学基金青年项目(BK20180904);; 江苏省高校自然科学基金面上项目(18KJB210012);; 江苏省农业科技自主创新资金重大专项(XC(16)1001)
  • 语种:中文;
  • 页:NYDX201906013
  • 页数:12
  • CN:06
  • ISSN:11-3837/S
  • 分类号:110-121
摘要
为了解国内外关于水稻条纹病毒(Rice stripe virus, RSV)-寄主-介体三者间互作关系的研究现状,采用文献检索的方法,对研究结果进行总结和比较分析。结果表明:1)RSV自身编码蛋白间存在着较为复杂的直接互作,从而保证了病毒生命过程的有序衔接。2)RSV与寄主水稻及介体灰飞虱间的间接互作,大多与病毒造成的在植物上症状,病毒经介体卵传播等特点相吻合。3)RSV编码蛋白与介体因子间的直接互作,参与了病毒在介体中的复制,传播及抵御介体免疫等生命过程。4) RSV-寄主-介体三者间互作关系的研究已成为领域内的研究热点,国内每年高水平研究论文不断涌现。针对RSV-介体互作研究中病毒与介体遗传体系均不成熟的现状,提出以下的解决方案:加快RSV全长侵染性cDNA克隆的构建或者RSV微小复制子的构建;另外可以对现有的CRISPR/Cas9技术进行优化,尽快实现对灰飞虱进行高通量的基因敲除。
        To investigate the current research status of tripartite interactions of Rice stripe virus(RSV)-host-vector from home and abroad, recent researches are summarized and compared by literature search. The results show that: 1) The complex and direct interactions between the RSV encoded proteins ensured the orderly connections of the viral life cycle. 2) The indirect interactions of RSV-host-vector are mostly consistent with the characteristics of virus infection symptoms on the plant and virus transmission through the planthopper's eggs. 3) The direct interactions between viral proteins and vector factors participate in the life cycle of virus replication, transmission, and resistance to the planthopper's immunity. 4) The studies of RSV-host-vector interactions have already become a hot topic in plant virology and high-level researches are emerging now in China. In view of the immature genetic system of RSV and planthopper in studies of RSV-vector interactions, solutions such as accelerating the construction of the full-length cDNA infectious clone or the mini-replicon of RSV and optimizing of the existing CRISPR/Cas9 technology to achieve high-through gene knockout of planthopper are proposed.
引文
[1] King A M Q,Adams M J,Eric B Carstens,Lefkowitz E J.Virus Taxonomy:Ninth Report of the International Committee on Taxonomy of Viruses[M].San Diego:Elsevier Press,2011
    [2] Hibino H.Biology and epidemiology of rice viruses[J].Annual Review of Phytopathology,1996,34(1):249-274
    [3] Wu S J,Zhong H,Zhou Y,Zou H,Zhou L H,Zhu J Y,Ji C Q,Gu S L,Gu M H,Liang G H.Identification of QTLs for the resistance to Rice stripe virus in the indica rice variety Dular[J].Euphytica,2009,165(3):557-565
    [4] Falk B W,Tsai J H.Biology and molecular biology of viruses in the genus Tenuivirus[J].Annual Review of Phytopathology,1998,36(1):139-163
    [5] Lian S,Jonson M G,Cho W K,Choi H S,Je Y H,Kim K H.Generation of antibodies against Rice stripe virus proteins based on recombinant proteins and synthetic polypeptides[J].Plant Pathology Journal,2011,27(1):37-43
    [6] Xiong R Y,Wu J X,Zhou Y J,Zhou X P.Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus[J].Virology,2009,387(1):29-40
    [7] Sun F,Yuan X,Zhou T,Fan Y J,Zhou Y J.Arabidopsis is susceptible to Rice stripe virus infections[J].Journal of Phytopathology,2011,159(11-12):767-772
    [8] Cui F,Zhao W,Luo L,Kang L.Rice responses and resistance to planthopper-borne viruses at transcriptomic and proteomic levels[J].Current Issues in Molecular Biology,2016,19:43-52
    [9] Blanc S,Waigmann E,Heinlein M.Virus transmission-getting out and in[M].In:David G R,Peter N,eds,Plant Cell Monographs,Berlin,Heidelberg:Springer Berlin Heidelberg:2007,7:1-28
    [10] Nicoletti M,Murugan K,Benelli G.Emerging insect-borne diseases of agricultural,medical and veterinary importance[M].In:Nicoletti M,Murugan K,Benelli G,eds.Insecticides Resistance,London:IntechOpen:2016,219-241
    [11] FernáNdez-Calvino L,LóPez-Abella D,LóPez-Moya J J.Integrated management of insect borne viruses by means of transmission interference as an alternative to pesticides[M].In:Ciancio A,Mukerji K G,eds.General Concepts in Integrated Pest and Disease Management,Dordrecht:Springer Netherlands,2007,269-293
    [12] Zhao W,Yang P C,Kang L,Cui F.Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants[J].New Phytologist,2016,210(1):196-207
    [13] Hogenhout S A,Ammar E D,Whitfield A E,Redinbaugh M G.Insect vector interactions with persistently transmitted viruses[J].Annual Review of Phytopathology,2008,46(1):327-359
    [14] Huo Y,Liu W W,Zhang F J,Chen X Y,Li L,Liu Q F,Zhou Y J,Wei T Y,Fang R X,Wang X F.Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector[J].PLoS Pathogens,2014,10(3):e1003949
    [15] Rosa C,Kuo Y W,Wuriyanghan H,Falk B W.RNA interference mechanisms and applications in plant pathology[J].Annual Review of Phytopathology,2018,56(1):581-610
    [16] Monteiro F,Nishimura M T.Structural,functional,and genomic diversity of plant NLR proteins:an evolved resource for rational engineering of plant immunity[J].Annual Review of Phytopathology,2018,56(1):243-267
    [17] Clavel M,Michaeli S,Genschik P.Autophagy:A double-edged sword to fight plant viruses[J].Trends in Plant Science,2017,22(8):646-648
    [18] Du P,Wu J G,Zhang J Y,Zhao S Q,Zheng H,Gao G,Wei L P,Li Y.Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors[J].PLoS Pathogens,2011,7(8):e1002176
    [19] Wu J G,Yang Z R,Wang Y,Zheng L J,Ye R Q,Ji Y H,Zhao S S,Ji S Y,Liu R F,Xu L,Zheng H,Zhou Y J,Zhang X,Cao X F,Xie L H,Wu Z J,Qi Y J,Li Y.Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA[J].eLife,2015,4:e05733
    [20] Wu J G,Yang R X,Yang Z R,Yao S Z,Zhao S S,Wang Y,Li P C,Song X W,Jin L,Zhou T,Lan Y,Xie L H,Zhou X P,Chu C C,Qi Y J,Cao X F,Li Y.ROS accumulation and antiviral defence control by microRNA528 in rice[J].Nature Plants,2017,3(1):16203
    [21] Hemmes H,Kaaij L,Lohuis D,Prins M,Goldbach R,Schnettler E.Binding of small interfering RNA molecules is crucial for RNA interference suppressor activity of rice Hoja blanca virus NS3 in plants[J].Journal of General Virology,2009,90(7):1762-1766
    [22] Lian S,Cho W K,Kim S M,Choi H,Kim K H.Time-course small RNA profiling reveals rice miRNAs and their target genes in response to Rice stripe virus infection[J].PLoS One,2016,11(9):e0162319
    [23] Yang J,Zhang F,Li J,Chen J P,Zhang H M.Integrative analysis of the microRNAome and transcriptome illuminates the response of susceptible rice plants to Rice stripe virus[J].PLoS One,2016,11(1):e0146946
    [24] Tong A Z,Yuan Q,Wang S,Peng J J,Lu Y W,Zheng H Y,Lin L,Chen H R,Gong Y F,Chen J P,Yan F.Altered accumulation of osa-miR171b contributes to Rice stripe virus infection by regulating disease symptoms[J].Journal of Experimental Botany,2017,68(15):4357-4367
    [25] Wang B,Hajano J U D,Ren Y D,Lu C T,Wang X F.iTRAQ-based quantitative proteomics analysis of rice leaves infected by Rice stripe virus reveals several proteins involved in symptom formation[J].Virology journal,2015,12(1):99
    [26] Shi B B,Lin L,Wang S H,Guo Q,Zhou H,Rong L L,Li J M,Peng J J,Lu Y W,Zheng H Y,Yang Y,Chen Z,Zhao J P,Jiang T,Song B A,Chen J P,Yan F.Identification and regulation of host genes related to Rice stripe virus symptom production[J].New Phytologist,2016,209(3):1106-1119
    [27] Zhao W,Lu L X,Yang P C,Cui N,Kang L,Cui F.Organ-specific transcriptome response of the small brown planthopper toward Rice stripe virus[J].Insect Biochemistry and Molecular Biology,2016,70:60-72
    [28] Netherton C L,Wileman T.Virus factories,double membrane vesicles and viroplasm generated in animal cells[J].Current Opinion in Virology,2011,1(5):381-387
    [29] Hannun Y A,Obeid L M.Principles of bioactive lipid signalling:Lessons from sphingolipids[J].Nature Reviews:Molecular Cell Biology,2008,9(2):139-150
    [30] Phan V H,Herr D R,Panton D,Fyrst H,Saba J D,Harris G L.Disruption of sphingolipid metabolism elicits apoptosis-associated reproductive defects in Drosophila[J].Developmental Biology,2007,309(2):329-341
    [31] Umehara T,Sudoh M,Yasui F,Matsuda C,Hayashi Y,Chayama K,Kohara M.Serine palmitoyltransferase inhibitor suppresses HCV replication in a mouse model[J].Biochemical and Biophysical Research Communications,2006,346(1):67-73
    [32] Katsume A,Tokunaga Y,Hirata Y,Munakata T,Saito M,Hayashi H,Okamoto K,Ohmori Y,Kusanagi I,Fujiwara S,Tsukuda T,Aoki Y,Klumpp K,Tsukiyama Kohara K,El Gohary A,Sudoh M,Kohara M.A serine palmitoyltransferase inhibitor blocks Hepatitis C virus replication in human hepatocytes[J].Gastroenterology,2013,145(4):865-873
    [33] Schneider-Schaulies J,Schneider-Schaulies S.Sphingolipids in viral infection[J].Biological Chemistry,2015,396(6-7):585-595
    [34] Hayashi Y,Nemoto-Sasaki Y,Tanikawa T,Oka S,Tsuchiya K,Kouta Z M,Mitsutake S,Sugiura T,Yamashita A.Sphingomyelin synthase 2,but not sphingomyelin synthase 1,is involved in HIV-1 envelope-mediated membrane fusion[J].Journal of Biological Chemistry,2014,289(44):30842-30856
    [35] Jiao W J,Li F Q,Bai Y L,Shi X X,Zhu M F,Zhang M J,Mao C G,Zhu Z R.Rice stripe virus infection alters mRNA levels of sphingolipid-metabolizing enzymes and sphingolipids content in Laodelphax striatellus[J].Journal of Insect Science,2017,17(1):16
    [36] Zhou Y,Lin X W,Zhang Y R,Huang Y J,Zhang C H,Yang Q,Li H Y,Yuan J Q,Cheng J A,Xu R,Mao C,Zhu Z R.Identification and biochemical characterization of Laodelphax striatellus neutral ceramidase[J].Insect Molecular Biology,2013,22(4):366-375
    [37] Li S,Wang S J,Wang X,Li X L,Zi J Y,Ge S S,Cheng Z B,Zhou T,Ji Y H,Deng J H,Wong S M,Zhou Y J.Rice stripe virus affects the viability of its vector offspring by changing developmental gene expression in embryos[J].Scientific Reports,2015,5:7883
    [38] Liu B B,Qin F L,Liu W W,Wang X F.Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus[J].Scientific Reports,2016,6(1):27216
    [39] 鹿连明.利用酵母双杂交系统研究水稻条纹病毒与寄主水稻之间的互作[D].福州:福建农林大学,2014Lu L M.Study on the interaction between Rice stipe virus and host rice by Yeast two-hybrid system[D].Fujian:Fujian Agriculture and Forestry University,2014 (in Chinese)
    [40] Shen M,Xu Y,Jia R,Zhou X P,Ye K Q.Size-independent and noncooperative recognition of dsRNA by the Rice stripe virus RNA silencing suppressor NS3[J].Journal of Molecular Biology,2010,404(4):665-679
    [41] Kim H,Cho W K,Lian S,Kim K H.Identification of residues or motif(s) of the Rice stripe virus NS3 protein required for self-interaction and for silencing suppressor activity[J].Virus Research,2017,235:14-23
    [42] 牛晓庆,鹿连明,吴祖建.酵母双杂交技术研究NS3蛋白及其与CP,SP,NSvc4之间的互作[J].热带作物学报,2012,33(9):1642-1646Niu X Q,Lu L M,Wu Z J.Study on the interaction between NS3 of Rice stripe virus and CP,SP,NSvc4 and itself[J].Chinese Journal of Tropical Crops,2012,33(9):1642-1646 (in Chinese)
    [43] Takahashi M,Toriyama S,Hamamatsu C,Ishihama A.Nucleotide sequence and possible ambisense coding strategy of Rice stripe virus RNA segment 2[J].Journal of General Virology,1993,74(4):769-773
    [44] 侯艳玲.水稻条纹病毒NSvc2-N与NSvc2-C蛋白互作白研究[D].扬州:扬州大学,2013Hou Y L.Study on the interaction of Rice stripe virus NSvc2-N and NSvc2-C[D].Yangzhou:Yangzhou University,2013 (in Chinese)
    [45] Wu W,Zheng L M,Chen H Y,Jia D S,Li F,Wei T Y.Nonstructural protein NS4 of Rice stripe virus plays a critical role in viral spread in the body of vector insects[J].PLoS One,2014,9(2):e88636
    [46] Zhao S L,Hao J H,Xue Y N,Liang C Y.Intracellular localization of Rice stripe virus RNA-dependent RNA polymerase and its interaction with nucleocapsid protein[J].Virus Genes,2015,51(3):423-429
    [47] Lu L M,Du Z G,Qin M L,Wang P,Lan H H,Niu X Q,Jia D S,Xie L Y,Lin Q Y,Xie L H,Wu Z J.Pc4,a putative movement protein of Rice stripe virus,interacts with a type I DnaJ protein and a small Hsp of rice[J].Virus Genes,2009,38(2):320-327
    [48] Du Z G,Xiao D L,Wu J G,Jia D S,Yuan Z J,Liu Y,Hu L Y,Han Z,Wei T Y,Lin Q Y,Wu Z J,Xie L H.p2 of Rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor[J].Molecular Plant Pathology,2011,12(8):808
    [49] Zheng L P,Du Z G,Lin C,Mao Q Z,Wu K C,Wu J G,Wei T Y,Wu Z J,Xie L H.Rice stripe tenuivirus p2 may recruit or manipulate nucleolar functions through an interaction with fibrillarin to promote virus systemic movement[J].Molecular Plant Pathology,2015,16(9):921-930
    [50] Kong L F,Wu J X,Lu L N,Xu Y,Zhou X P.Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms[J].Molecular Plant,2014,7(4):691-708
    [51] Fu S,Xu Y,Li C Y,Li Y,Wu J X,Zhou X P.Rice stripe virus interferes with S-acylation of remorin and induces its autophagic degradation to facilitate virus infection[J].Molecular Plant,2017,11(2):269-287
    [52] Zheng L J,Zhang C,Shi C N,Yang Z R,Wang Y,Zhou T,Sun F,Wang H,Zhao S S S,Qin Q Q Q,Qiao R,Ding Z M M,Wei C H H,Xie L H H,Wu J G,Li Y.Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice[J].PLoS Pathogens,2017,13(10):e1006662
    [53] Li S,Xiong R Y,Wang X F,Zhou Y J.Five proteins of Laodelphax striatellus are potentially involved in the interactions between Rice stripe virus and vector[J].PLos One,2011,6(10):e26585
    [54] Liu W W,Gray S,Huo Y,Li L,Wei T Y,Wang X F.Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein[J].Molecular & Cellular Proteomics,2015,14(8):2229
    [55] Xu Y,Wu J X,Fu S,Li C Y,Zhu Z R,Zhou X P.Rice stripe tenuivirus nonstructural protein 3 hijacks the 26s proteasome of the small brown planthopper via direct interaction with regulatory particle non-ATPase subunit 3[J].Journal of Virology,2015,89(8):4296-4310
    [56] Wang W,Zhao W,Li J,Luo L,Kang L,Cui F.The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication[J].eLife,2017,6:
    [57] Qin F L,Liu W W,Wu N,Zhang L,Zhang Z K,Zhou X P,Wang X F.Invasion of midgut epithelial cells by a persistently transmitted virus is mediated by sugar transporter 6 in its insect vector[J].PLoS Pathogens,2018,14(7):e1007201
    [58] Li T,Liu B,Spalding M H,Weeks D P,Yang B.High-efficiency TALEN-based gene editing produces disease-resistant rice[J].Nature Biotechnology,2012,30(5):390-392
    [59] Jiang W Z,Zhou H B,Bi H H,Fromm M,Yang B,Weeks D P.Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J].Nucleic Acids Research,2013,41(20):e188
    [60] Ma X L,Zhang Q Y,Zhu Q L,Liu W,Chen Y,Qiu R,Wang B,Yang Z F,Li H Y,Lin Y R,Xie Y Y,Shen R X,Chen S F,Wang Z,Chen Y L,Guo J X,Chen L T,Zhao X C,Dong Z C,Liu Y G.A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J].Molecular Plant,2015,8(8):1274-1284
    [61] Ding X S,Rao C S,Nelson R S.Analysis of gene function in rice through virus-induced gene silencing[M].In:Pamela R C,eds.Plant-Pathogen Interactions:Methods and Protocols.New Jersey:Humana Press,2007,145-160
    [62] Purkayastha A,Mathur S,Verma V,Sharma S,Dasgupta I.Virus-induced gene silencing in rice using a vector derived from a DNA virus[J].Planta,2010,232(6):1531-1540
    [63] Zhang C F,Xue J,Ye Y X,Jiang Y Q,Zhuo J C,Huang H J,Cheng R L,Xu H J,Zhang C X.Efficient RNAi of rice planthoppers using microinjection[J].Protocal Exchange,2015,12(4):739-747
    [64] Kanakala S,Ghanim M.RNA interference in insect vectors for plant viruses[J].Viruses,2016,8(12):329
    [65] Zhao W,Xu Z T,Zhang X M,Yang M L,Kang L,Liu R Y,Cui F.Genomic variations in the 3′-termini of Rice stripe virus in the rotation between vector insect and host plant[J].New Phytologist,2018,219(3):1085-1096

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700