Ti_2AlNb金属间化合物喷丸强化残余应力模拟分析与疲劳寿命预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of the Residual Stress and Fatigue Prediction of Ti_2AlNb Intermetallic Compound under Shot Peening
  • 作者:陈禹锡 ; 高玉魁
  • 英文作者:CHEN Yu-xi;GAO Yu-kui;School of Aerospace Engineering and Applied Mechanics,Tongji University;
  • 关键词:喷丸强化 ; 表层改性 ; 数值模拟 ; 残余应力 ; 寿命预测 ; 新型材料
  • 英文关键词:shot peening;;surface modification;;numerical simulation;;residual stress;;fatigue life prediction;;new material
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:同济大学航空航天与力学学院;
  • 出版日期:2019-06-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金项目(11372226)~~
  • 语种:中文;
  • 页:BMJS201906021
  • 页数:7
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:181-186+202
摘要
目的研究经喷丸强化处理后Ti_2AlNb材料表层残余应力的分布特征,并预测残余应力对材料疲劳性能的影响规律。方法通过贴应变片逐层钻孔法,对使用喷丸强化处理后的Ti_2AlNb试样进行残余应力测试分析,得到引入残余应力场各方面的测试数据,结合ABAQUS数值模拟方式,对比分析试验与模拟残余应力场结果,获取材料的最终残余应力梯度。利用FE-SAFE软件,通过叠加残余应力场的方式,预测喷丸强化前后试样的疲劳寿命。结果在文中加工参数下,实验测试和软件模拟结果的重合度良好。喷丸强化可在Ti_2AlNb金属间化合物靶材内引入300MPa左右的最大残余压应力,深度达到了0.12mm左右。材料表面塑性应变分布不均匀,且造成的塑性应变距表面深度可达0.1mm。通过喷丸强化引入残余压应力,预测的Ti_2AlNb材料疲劳极限可提高12%,高低周疲劳寿命均有明显的延寿效果。结论验证了有限元数值模拟此材料喷丸强化的准确性和可靠性,得到了Ti_2AlNb材料喷丸强化的残余应力场。由于塑性变形诱发机制的限制,喷丸造成塑性应变分布不均匀,塑性应变层深小于残余压应力层深。此外,强化后材料的疲劳性能显著提高,疲劳极限有可观的提升,且高低周疲劳均有较好的延寿效果。
        The work aims to investigate the distribution characteristics of residual stresses on the surface layer of Ti_2AlNb materials by shot peening, and predict the effect of residual stresses on fatigue performance. The residual stresses of Ti_2AlNb specimens modified by shot peening were measured by the method of hole-drilling with strain gauge layer by layer. The test data of the residual stress field in various aspects were obtained. Combined with ABAQUS numerical simulation method, the results of the test and simulation of residual stress field were compared, and the residual stress gradient of the material was finally obtained. The fatigue life of the specimens before and after shot peening was predicted by FE-SAFE software by superimposing the residual stress field. Under the processing parameters, the experimental and simulation results coincided well. Shot peening could introduce maximum residual compressive stress up to 300 MPa in Ti_2AlNb target and the depth of residual compressive stress layer was about 0.12 mm. The plastic strain distribution on the surface of the material was uneven, and the depth of plastic strain along the surface could reach 0.1 mm. After shot peening, residual compressive stresses were introduced so that the predicted fatigue limit of the material was raised by about 12%, and both the high and low cycle fatigue life was efficiently increased. The accuracy and reliability of FEM numerical simulation of shot peening of this material are confirmed, and the residual stress field of Ti_2AlNb material is obtained. Due to the limitation of plastic deformation induced mechanism, shot peening results in uneven distribution of plastic strain, and the depth of plastic strain layer is less than that of residual compressive stress layer. Meanwhile, the fatigue property of the material is improved significantly, the fatigue limit is increased considerably, and both the high and low cycle fatigues have visible life extension effect.
引文
[1]BANERJEE D,GOGIA A K,NANDI T K,et al.A new ordered orthorhombic phase in a Ti3Al Nb alloy[J].Acta metallurgica,1988,36(4):871-882.
    [2]GERMANN L,BANERJEE D,GUEDOU J Y,et al.Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide[J].Intermetallics,2005,13(9):920-924.
    [3]冯艾寒,李渤渤,沈军.Ti2AlNb基合金的研究进展[J].材料与冶金学报,2011,10(1):30-38.FENG Ai-han,LI Bo-bo,SHEN Jun.Recent advances on Ti2AlNb-based alloys[J].Journal of materials and metallurgy,2011,10(1):30-38.
    [4]高玉魁.表面完整性理论与应用[M].北京:化学工业出版社,2014.GAO Yu-kui.Surface integrity theory and application[M].Beijing:Chemical Industry Press,2014.
    [5]SCHIJVE J.Fatigue of structures and materials[M].Dordrecht:Kluwer Academic,2001.
    [6]GAO Yu-kui,WU Xue-ren.Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses[J].Acta materialia,2011,59(9):3737-3747.
    [7]GAO Yu-kui.Improvement of fatigue property in 7050-T7451 aluminum alloy by laser peening and shot peening[J].Materials science and engineering A,2011,528(10/11):3823-3828.
    [8]蒋聪盈,黄露,王婧辰,等.TC4钛合金激光冲击强化与喷丸强化的残余应力模拟分析[J].表面技术,2016,45(4):5-9.JIANG Cong-ying,HUANG Lu,WANG Jing-chen,et al.Simulation analysis of the residual stress field of TC4 Ti alloy under laser shock peening and shot peening[J].Surface technology,2016,45(4):5-9.
    [9]MEGUID S A,KLAIR M S.An examination of the relevance of co-indentation studies to incomplete coverage in shot-peening using the finite-element method[J].Journal of mechanical working technology,1985,11(1):87-104.
    [10]盛湘飞,李智,赵科宇,等.相同喷丸强度条件下喷丸强化效果的数值模拟研究[J].表面技术,2018,47(9):42-48.SHENG Xiang-fei,LI Zhi,ZHAO Ke-yu,et al.Numerical simulation research on strengthening effect of shot peening at identical intensity[J].Surface technology,2018,47(9):42-48.
    [11]陈家伟,廖凯,车兴飞,等.铝合金喷丸应力-变形的仿真分析与实验[J].表面技术,2018,47(11):41-47.CHEN Jia-wei,LIAO Kai,CHE Xing-fei,et al.Simulation analysis and experiment of surface stress-deformation on Al-based alloy by shot peening[J].Surface technology,2018,47(11):41-47.
    [12]ASTM E837-08,Standard test method for determining residual stresses by the hole-drilling strain-gauge method[S].
    [13]高玉魁.冲击强化对304奥氏体不锈钢拉伸性能的影响[J].材料工程,2014(8):36-40.GAO Yu-kui.Influence of impact enhancements on tensile property of 304 austenite steel[J].Journal of materials engineering,2014(8):36-40.
    [14]ZHAO Chun-mei,GAO Yu-kui,GUO Jing,et al.Investigation on residual stress induced by shot peening[J].Journal of materials engineering and performance,2015,24(3):1340-1346.
    [15]GAO Y K,YIN Y F,YAO M.Effects of shot peening on fatigue properties of 0Cr13Ni8Mo2Al steel[J].Materials science and technology,2003,19(3):372-374.
    [16]MAHMOUDI A h,GHASEMI A,FARRAHI G H,et al.Acomprehensive experimental and numerical study on redistribution of residual stresses by shot peening[J].Materials and design,2016,90:478-487.
    [17]姜年朝.ANSYS和ANSYS/FE-SAFE软件的工程应用及实例[M].南京:河海大学出版社,2006.JIANG Nian-chao.Engineering applications and examples of ANSYS and ANSYS/FE-SAFE software[M].Nanjing:Hohai University Press,2006.
    [18]LINDEMANN J,BUQUE C,APPEL F.Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J].Acta materialia,2006,54(4):1155-1164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700