重熔温度对WC_P/Fe复合材料界面特征及压缩断裂机制的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of re-melting temperature on interface and compression fracture mechanism of WCP/Fe composites
  • 作者:陈奉锐 ; 山泉 ; 李祖来 ; 蒋业华 ; 张亚峰 ; 张飞
  • 英文作者:CHEN Fengrui;SHAN Quan;LI Zulai;JIANG Yehua;ZHANG Yafeng;ZHANG Fei;School of Material Science and Engineering,Kunming University of Science and Technology;
  • 关键词:复合材料 ; WCP ; 重熔温度 ; 界面反应 ; 压缩性能 ; 裂纹
  • 英文关键词:composites;;WCP;;re-melting temperature;;interface reaction;;compression performances;;crack
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:昆明理工大学材料科学与工程学院;
  • 出版日期:2018-03-06 10:39
  • 出版单位:复合材料学报
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金(51561018);国家自然科学基金青年基金(51501079);; 云南省自然科学基金青年基金(2015FD009)
  • 语种:中文;
  • 页:FUHE201811023
  • 页数:8
  • CN:11
  • ISSN:11-1801/TB
  • 分类号:194-201
摘要
为研究重熔温度对WC_P/Fe复合材料界面特征及力学性能的影响,采用粉末烧结法制备了WC_P/Fe复合材料,然后对其进行界面重熔,为颗粒增强金属基复合材料的界面组织设计及其工程应用提供理论指导。结果表明:随着重熔温度的升高,颗粒中WC发生相变生成W_2C;W_2C与Fe可在固态条件下发生反应生成界面相Fe3W3C,且界面反应区宽度呈增大趋势,界面形态由间断状变成连续环状再到锯齿状;WC_P/Fe复合材料的压缩强度先升高后下降,当重熔温度为1 300℃时,界面宽度为13.5μm,界面形态呈完整连续环状,WC_P/Fe复合材料内部压缩裂纹不易萌生与扩展,其压缩强度达到最大值,为386MPa。
        In order to investigate the effects of re-melting temperature on the interface characteristics and mechanical properties of WC_P/Fe composites,the WC_P/Fe composites were prepared by powder sintering and the interface of the composites were re-melted at the different temperatures.The research provides a theoretical basis for the interface structure design and the application of particle reinforced metal matrix composites.The results show that a phase transition reaction occurs from WC to W_2C with the increase of the re-melting temperature,and W_2C reacts with Fe to generate the solid Fe_3W_3C phase.Besides,the width of interface reaction zone increases with the increase of the re-melting temperature.The interfacial morphology is transformed from discontinuous cycle to a continuous cycle and then to serration shape.The compressive strength of the WC_P/Fe composites exhibits the trend of increasing and then decreasing.When re-melting temperature is 1 300℃,the interface width is 13.5μm and the interface reaction zone appears in continuous cycle shape.The internal compressive cracks of the composites are not inclined to initiate and propagation.Meanwhile,the compression strength of composites is 386 MPa when it reaches the maximum.
引文
[1]张鹏,李付国.界面对颗粒增强金属基复合材料强化性能的影响[J].材料科学与工艺,2010,18(2):192-198.ZHANG P,LI F G.Interfacial effects on the strengthening behavior of metal matrix composite reinforced SiC particles[J].Materials Science&Technology,2010,18(2):192-198(in Chinese).
    [2]崔春翔,吴人洁,王浩伟.金属基复合材料界面特征与力学性能[J].宇航材料工艺,1997(1):1-6CUI C X,WU R J,WANG H W.Characteristics of interface and mechanical properties of MMCs[J].Aerospace Materials Technology,1997(1):1-6(in Chinese).
    [3]陈硕,张龙,赵忠民,等.TiB2基陶瓷-42CrMo合金钢层状复合材料界面结构与力学性能[J].复合材料学报,2016,33(11):2600-2608.CHEN S,ZHANG L,ZHAO Z M,et al.Interfacial structure and mechanical properties of laminated composites of TiB2 based ceramic-42CrMo alloy steel[J].Acta Materiae Compositae Sinica,2016,33(11):2600-2608(in Chinese).
    [4]吴志凯,江五贵,郑隆.界面对双向纤维增强复合材料力学性能的影响[J].复合材料学报,2017,34(1):217-223.WU Z K,JIANG W G,ZHENG L.Interfacial effect on mechanical behaviors of bidirecitional-fiber-reinforced composites[J].Acta Materiae Compositae Sinica,2017,34(1):217-223(in Chinese).
    [5]YANG Z M,WU T T,LIU J X,et al.Interface optimization and mechanical properties of Cu-coated carbon fiber cloth/titanium alloy composite[J].Rare Metal Materials and Engineering,2017,46(4):0869-0875(in Chinese).
    [6]吴朝锋,马明星,周志成,等.激光原位合成颗粒尺寸对铁基复合涂层耐磨性的影响[J].红外与激光工程,2010,39(2):306-310.WU C F,MA M X,ZHOU Z C,et al.Influence of particle size on the wear resistance of Fe-based composite coatings by laser cladding[J].Infrared and Laser Engineering,2010,39(2):306-310(in Chinese).
    [7]田治宇.颗粒增强金属基复合材料的研究及应用[J].金属材料与冶金工程,2008,36(1):3-7.TIAN Z Y.Research and application of particle reinforced metal matrix composite material[J].Metal Materials and Metallurgy Engineering,2008,36(1):3-7(in Chinese).
    [8]GHOMASHCHI M R.Fabrication of nearnet-shaped Albased intermetallics matrix composites[J].Journal of Materials Processing Technology,2001,112(2-3):227-235.
    [9]PARK B G,CROSKY A G,HELLIER A K.Fracture toughness of microsphere Al2O3particulatemetal matrix composites[J].Composites Part B:Engineering,2008,39(7-8):1270-1279.
    [10]冯涛,郁振其,韩洋,等.SiCP/2024Al铝基复合材料搅拌摩擦焊接头微观组织[J].航空材料学报,2013,33(4):27-31.FENG T,YUN Z Q,HAN Y,et al.Frictionstir welding microstructure of SiCP/2024AlMMC[J].Journal of Aeronautical Materials,2013,33(4):27-31(in Chinese).
    [11]韩远飞,孙相龙,邱培坤,等.颗粒增强钛基复合材料先进加工技术研究与进展[J].复合材料学报,2017,34(8):1625-1635.HAN Y F,SHUN X L,QIU P K,et al.Research and development of processing technology on particulate reinforced titanium matrix composites[J].Acta Materiae Compositae Sinica,2017,34(8):1625-1635(in Chinese).
    [12]韦贺,李祖来,山泉,等.体积分数对WCP/铁基复合材料组织及压缩性能的影响[J].复合材料学报,2016,33(11):2560-2568.WEI H,LI Z L,SHAN Q,et al.Effect of volume fraction on compression performance of WCP/iron composites materials[J].Acta Materiae Compositae Sinica,2016,33(11):2560-2568(in Chinese).
    [13]欧阳柳章,罗承萍,骆灼旋,等.SiCP/ZL109复合材料界面研究[J].铸造,1999(3):9-11.OUYANG L Z,LUO C P,LUO Z X,et al.Study on interface characteristics of SiCP/ZL109aluminium alloy composites[J].Foundry,1999(3):9-11(in Chinese).
    [14]DOSTA S,COUTO M,GUILEMANY J M.Cold spray deposition of a WC-25Co cermet onto Al7075-T6and carbon steel substrates[J].Acta Materialia,2013,61(2):643-652.
    [15]DOSTA S,BOLELLI G,CANDELI A,et al.Plastic deformation phenomena during cold spray impact of WC-Co particles onto metal substrates[J].Acta Materialia,2017,124:173-181.
    [16]MANDALA D,VISWANATHAN S.Effect of re-melting on particle distribution and interface formation in SiC reinforced2124Al matrix composite[J].Materials Characterization,2013,86:21-27.
    [17]中国国家标准化管理委员会.金属材料室温压缩试验方法:GB/T 7314-2005[S].北京:中国标准出版社,2005.Standardization Administration of the People's Republic of China.Metallic materials:Compression testing at ambient temperature:GB/T 7314-2005[S].Beijing:China Standards Press,2005(in Chinese)
    [18]龙伟民,刘胜新.材料力学性能测试手册[M].北京:机械工业出版社,2014.LONG W M,LIU S X.Material mechanics performance test manual[M].Beijing:China Machine Press,2014(in Chinese).
    [19]黄汝清.碳化钨/钢基表层复合材料基体组织改性及其界面连续性研究[D].昆明:昆明理工大学,2013.HUANG R Q.Study of microstructure variation and interface continuity of tungsten carbide particle reinforced steel substrate surface composite[D].Kunming:Kunming University of Science and Technology,2013(in Chinese).
    [20]UPADHYAYA G S.Cemented tungsten carbides:Production,properties,and testing[J].New Jersey:Noyes Publication,1998.
    [21]SUETIN D V,SHEIN I R,IVANOVSKII A L.Structural,electronic and magnetic properties ofηcarbides(Fe3W3C,Fe6W6C,Co3W3C and Co6W6C)form first principles calculations[J].Physica B:Condensed Matter,2009,404(20):3544-3549.
    [22]LI Z L,WEI H,SHAN Q,et al.Formation mechanism and stability of the phase in the interface oftungsten carbide particles reinforced iron matrix composites:First principles calculations and experiments[J].Journal of Materials Research,2016,31(16):2376-2383.
    [23]杨慧.颗粒增强复合材料的大变形细观力学模型[J].机械强度,2016,38(3):564-569.YANG H.Micromechanics models of particulate filled elastomer at finite strain deformation[J].Journal of Mechanical Strength,2016,38(3):564-569(in Chinese).
    [24]张宁,强颖怀,杨莉,等.热处理对复合电冶熔铸WC颗粒增强钢基复合材料力学性能的影响[J].热处理学报,2016,41(11):98-104.ZHANG N,QIANG Y H,YANG L,et al.Influence of heat treatment on mechanical of WC particulates reinforced steel matrix composites by composite electroslag melting and casting[J].Heat Treatment of Metals,2016,41(11):98-104(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700