真空熔覆原位自生W_xC/Ni基复合涂层的组织及耐磨性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and wear resistance of in-situ synthesized W_xC/Ni composite coating prepared with vacuum cladding
  • 作者:张春华 ; 张瀚方 ; 刘凯 ; 谭俊哲 ; 张松
  • 英文作者:ZHANG Chun-hua;ZHANG Han-fang;LIU Kai;TAN Jun-zhe;ZHANG Song;School of Materials Science and Engineering,Shenyang University of Technology;Nuclear Power Pump Industry Co.Ltd.,Shenyang Blower Works Group Corporation;
  • 关键词:真空熔覆 ; 原位自生 ; 镍基合金 ; 碳化钨 ; 复合涂层 ; 显微组织 ; 显微硬度 ; 摩擦磨损
  • 英文关键词:vacuum cladding;;in-situ synthesis;;nickel base alloy;;tungsten carbide;;composite coating;;microstructure;;microhardness;;friction and wear
  • 中文刊名:SYGY
  • 英文刊名:Journal of Shenyang University of Technology
  • 机构:沈阳工业大学材料科学与工程学院;沈阳鼓风机集团核电泵业有限公司;
  • 出版日期:2018-10-19 15:24
  • 出版单位:沈阳工业大学学报
  • 年:2019
  • 期:v.41;No.203
  • 基金:国家重点研发计划项目(2016YFB1100204);; 沈阳市科技局计划项目(17-29-2-00,Z17-2-002,Y17-1-031)
  • 语种:中文;
  • 页:SYGY201901005
  • 页数:6
  • CN:01
  • ISSN:21-1189/T
  • 分类号:27-32
摘要
为了提高煤油泵的使用寿命,利用真空熔覆技术在316L不锈钢表面原位合成了W_xC/Ni基复合涂层.采用扫描电子显微镜、能谱仪、X射线衍射仪研究了复合涂层的显微组织和相组成,并对其进行了硬度测量和摩擦性能试验.结果表明,复合涂层组织细密且与基材呈冶金结合.复合涂层主要由γ-Ni固溶体、原位生成的W_xC、(Cr,Fe)_7C_3和Cr_7C_3相组成,且W_xC相弥散分布在γ-Ni固溶体中.复合涂层的硬度约为316L不锈钢基材的4倍,相对耐磨性约为基材的37倍.
        In order to improve the service life of kerosene pumps,the in-situ synthesized W_xC/Ni composite coating was fabricated on the surface of 316L stainless steel with the vacuum cladding technology.The microstructure and phase constitute of composite coating were characterized with the scanning electron microscope(SEM),energy dispersive spectroscope(EDS)and X ray diffractometer(XRD),and the hardness measurement and friction performance test of composite coating were also performed.The results indicate that the composite coating has dense microstructure,and displays metallurgical bonding with the substrate.The composite coating are mainly composed ofγ-Ni solid solution,in-situ synthesized W_xC,(Cr,Fe)_7C_3and Cr_7C_3phases,and the W_xC phase dispersively distributes in theγ-Ni solid solution.The hardness of composite coating is 4 times as that of 316L stainless steel substrate,and the relative abrasion resistance is 37 times as that of the substrate.
引文
[1]臧春城,王延忠,张以都,等.激光熔覆Ni60+35WC-Ni涂层的微观组织和摩擦磨损特性[J].稀有金属,2015,39(5):385-391.(ZANG Chun-cheng,WANG Yan-zhong,ZHANGYi-du,et al.Microstructure and tribological behavior of Ni60+35WC-Ni coating produced by laser cladding[J].Chinese Journal of Rare Metals,2015,39(5):385-391.)
    [2]韦贺,李祖来,山泉,等.WC体积分数对WCp/Fe复合材料组织及压缩性能的影响[J].复合材料学报,2016,33(11):2560-2568.(WEI He,LI Zu-lai,SHAN Quan,et al.Effects of WC volume fraction on microstructures and compression performances of WCp/Fe composites[J].Acta Materiae Compositae Sinica,2016,33(11):2560-2568.)
    [3]Xu J S,Zhang X C,Xuan F Z,et al.Rolling contact fatigue behavior of laser cladded WC/Ni composite coating[J].Surface and Coatings Technology,2014,239(1):7-15.
    [4]Lyu Y,Sun Y,Yang Y.Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel[J].Metals and Materials International,2016,22(2):311-318.
    [5]García A,Fernndez MR,Cuetos J M,et al.Study of the sliding wear and friction behavior of WC+NiCrBSi laser cladding coatings as a cunction of actual concentration of WC reinforcement particles in ball-ondisk test[J].Tribology Letters,2016,63(3):41-45.
    [6]Zafar S,Sharma A K.On Friction and wear behavior of WC-12Co microwave clad[J].Tribology Transactions,2015,58(4):584-591.
    [7]Yang J X,Zhang J Q,Chang W Q,et al.High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J].Journal of Materials Engineering,2016,110(6):110-116.
    [8]Shu D,Li Z,Yao C,et al.In situ synthesised WC reinforced nickel coating by laser cladding[J].Surface Engineering,2018,34(4):276-282.
    [9]张春华,丁燕燕,关锰,等.类激光熔覆Stellite合金沉积层的组织及磨损性能[J].沈阳工业大学学报,2017,39(1):12-16.(ZHANG Chun-hua,DING Yan-yan,GUAN Meng,et al.Microstructure and wear properties of Stellite alloy deposited layer prepared by like-laser cladding[J].Journal of Shenyang University of Technology,2017,39(1):12-16.)
    [10]孙海勤,晁明举,敬骁定,等.原位生成VC颗粒增强镍基激光熔覆层研究[J].激光杂志,2008,29(5):69-71.(SUN Hai-qin,CHAO Ming-ju,JING Xiao-ding,et al.Investigation on in-situ synthesized VC particulate reinforced Ni-based composite coating by laser cladding[J].Laser Journal,2008,29(5):69-71.)
    [11]张艳梅,帅歌国,黄杰煌,等.激光熔覆原位自生WxC颗粒增强镍基复合涂层[J].金属热处理,2016,41(2):79-83.(ZHANG Yan-mei,SHUAI Ge-guo,HUANG Jiehuang,et al.WxC reinforced Ni-based composite coating in-situ synthesis by laser cladding[J].Heat Treatment of Metals,2016,41(2):79-83.)
    [12]孙国进,胡士廉,苏广才.原位合成TiCP/Fe复合材组织结构和力学性能的研究[J].热加工工艺,2015,44(22):75-81.(SUN Guo-jin,HU Shi-lian,SU Guang-cai.Research on microstructure and mechanical properties of TiCp/Fe composite[J].Hot Working Technology,2015,44(22):75-81.)
    [13]张春华,刘杰,吴臣亮,等.316L不锈钢表面激光熔覆Co基合金组织及锌蚀机理研究[J].焊接学报,2015,36(1):19-22.(ZHANG Chun-hua,LIU Jie,WU Chen-liang,et al.Microstructure and zinc corrosion mechanism of laser cladding Co based alloy on 316L stainless steel[J].Transactions of the China Welding Institution,2015,36(1):19-22.)
    [14]张喜冬.真空熔覆碳化钨增强镍基合金熔覆层组织及性能的研究[D].郑州:郑州大学,2015.(ZHANG Xi-dong.Study of microstructure and properties of vacuum fusion sintering WC reinforced nickel-base alloy fusion coating[D].Zhengzhou:Zhengzhou University,2015.)
    [15]杨宁,李立凯.WC-W2C-VC颗粒增强镍基熔覆层的热力学研究[J].应用激光,2015(3):300-303.(YANG Ning,LI Li-kai.Thermodynamic study of Nibased cladding layer reinforced by WC-W2C-VC particles[J].Applied Laser,2015(3):300-303.)
    [16]袁有录,李铸国.柱状碳化物(Cr,Fe)7C3增强Fe基涂层的摩擦磨损性能[J].材料研究学报,2013,27(6):622-630.(YUAN You-lu,LI Zhu-guo.Friction and wear performance of carbide(Cr,Fe)7C3-reinforced Fe-based composite coating[J].Chinese Journal of Materials Research,2013,27(6):622-630.)
    [17]Tao X P,Zhang S,Wu C L,et al.In situ synthesised WC-reinforced Co-based alloy layer by vacuum cladding[J].Surface Engineering,2018,34(4):316-323.
    [18]Wu Q,Li W,Zhong N,et al.Microstructure and wear behavior of laser cladding VC-Cr7C3,ceramic coating on steel substrate[J].Materials and Design,2013,49(16):10-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700