柠檬酸钠对Zn-Ni-Mn合金电沉积行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Sodium Citrate on Zn-Ni-Mn Alloy Electrodeposition Behavior
  • 作者:齐海东 ; 郭昭 ; 卢帅 ; 李运刚 ; 杨海丽
  • 英文作者:QI Hai-dong;GUO Zhao;LU Shuai;LI Yun-gang;YANG Hai-li;School of Metallurgy and Energy, North China University of Science and Technology;
  • 关键词:Zn-Ni-Mn合金 ; 柠檬酸钠 ; 电沉积行为 ; 成核机理 ; 吸附 ; 浓差极化
  • 英文关键词:Zn-Ni-Mn alloy;;sodium citrate;;electrodeposition behavior;;nucleation mechanism;;adsorption;;concentration polarization
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:华北理工大学冶金与能源学院;
  • 出版日期:2019-03-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金资助项目(51474088)~~
  • 语种:中文;
  • 页:BMJS201903030
  • 页数:10
  • CN:03
  • ISSN:50-1083/TG
  • 分类号:215-224
摘要
目的通过研究柠檬酸钠对Zn-Ni-Mn合金电沉积行为的影响,明确影响合金电沉积行为的决定性因素,并找出最大电极反应速率对应的柠檬酸钠浓度。方法采用循环伏安法(CV)、旋转圆盘电极(RDE)、电化学阻抗谱(EIS)、计时电流法(CA),对不同柠檬酸钠浓度下Zn-Ni-Mn合金电沉积行为进行研究,采用扫描电镜(SEM)、能谱仪(EDS)对Zn-Ni-Mn合金的表面形貌和成分进行表征。结果 CV分析得出,Zn-Ni-Mn合金的电沉积是一个不可逆过程,当柠檬酸钠浓度为0.6mol/L时,合金共沉积还原峰电位最正(-1.642 V,vs. Ag/Ag+)。RDE分析结果表明,Zn-Ni-Mn的电沉积受动力学和扩散过程混合控制,随着柠檬酸钠浓度的增大,沉积受扩散控制的程度减弱。EIS分析得出,Zn-Ni-Mn合金沉积的电极反应速率由吸附态中间产物造成的弛豫和离子扩散共同决定,当柠檬酸钠浓度为0.6 mol/L时,阻抗谱低频端出现了感抗弧,使极化电阻(Rp)减小并达到最低值(349.68Ω·cm2)。CA分析表明,Zn-Ni-Mn合金的形核速率随柠檬酸钠浓度的增大而降低,成核机理由瞬时成核向连续成核转变。SEM与EDS分析表明,随着柠檬酸钠浓度的增大,合金晶粒尺寸逐渐变大。随着合金中Mn含量的减少,晶粒由胞状转变为多边形状。合金中Zn含量的变化规律与电极反应速率的变化规律相一致。结论电解液中Zn~(2+)的主要存在形式对Zn-Ni-Mn合金的电沉积行为起着决定性作用;当柠檬酸钠浓度为0.6mol/L时,Zn~(2+)主要以[ZnHCit]-的形式存在,其中间产物[ZnHCit~(2-)]ads吸附在阴极表面,大大削弱了浓差极化,电极反应速率最快。
        The work aims to determine the decisive factor for influencing the alloy electrodeposition process and find out the concentration of sodium citrate corresponding to maximum electrode reaction rate by investigating the effect of sodium citrate on the electrodeposition behavior of Zn-Ni-Mn alloy. The electrodeposition behavior of Zn-Ni-Mn alloy in bath with different sodium citrate concentration was studied by cyclic voltammetry curve(CV), rotating disk electrode(RDE), electrochemical impedance spectroscopy(EIS) and chronoamperometry(CA). The surface morphology and elemental composition of alloy were characterized by scanning electron microscopy(SEM) and energy spectrum analysis(EDS). The electrodeposition of Zn-Ni-Mn was an irreversible process according to the CV analysis. When concentration of sodium citrate was 0.6 mol/L,co-deposition potential peak was most positive(-1.642 V, vs. Ag/Ag+). It was demonstrated by RDE analysis that electrodeposition of Zn-Ni-Mn alloy was a process controlled by dynamics and diffusion and with sodium citrate concentration increased; the influence of mass transfer on alloy deposition became weakened. The EIS analysis indicated that the rate of electrode reaction was determined by relaxation caused by intermediate adsorbate and diffusion of ions. When sodium citrate concentration was0.6 mol/L, an inductance arc appeared at low frequency, making the polarization resistance(Rp) decrease and reach to the minimum(349.68 Ω·cm~2). From CA curves, alloy nucleation rate decreased and the nucleation mechanism changed from instantaneous nucleation to continuous nucleation gradually with sodium citrate concentration increased. SEM and EDS results showed that the grain of Zn-Ni-Mn alloy became coarser with increasing of sodium citrate concentration. Grain developed from the cellular to the polygonal shape with decreasing of Mn content in alloy. The variation regularity of Zn content in the alloy was consistent with the electrode reaction rate. The electrodeposition process of Zn-Ni-Mn is determined by dominant species of Zn~(2+) in electrolyte. When sodium citrate concentration is 0.6 mol/L, Zn~(2+) ions mainly exists as [ZnHCit]- complexes in electrolyte. The intermediate product, [ZnHCit~(2-)]ads, can be adsorbed on the surface of cathode, that decreases concentration polarization greatly and obtains the fastest electrode reaction rate.
引文
[1]王胜民,赵晓军,党建伟,等.批量热浸锌工艺机理的研究现状[J].表面技术,2016,45(5):19-25.WANG Sheng-min,ZHAO Xiao-jun,DANG Jian-wei,et al.Reasearch status of the process mechanism of batch hot-dip galvanizing[J].Surface technology,2016,45(5):19-25.
    [2]LI Q Y,LU H,CUI J,et al.Electrodeposition of nanocrystalline zinc on steel for enhanced resistance to corrosive wear[J].Surface&coatings technology,2016,304:567-573.
    [3]XIANG T F,ZHANG M X,LI C,et al.CeO2 modified Si O2 acted as additive in electrodeposition of Zn-Ni alloy coating with enhanced corrosion resistance[J].Journal of alloy and compounds,2018,736:62-70.
    [4]王征,安茂忠,胡旭日,等.电沉积Zn-Ni-Sn合金工艺研究[J].材料工程,2006(4):37-40.WANG Zheng,AN Mao-zhong,HU Xu-ri,et al.Electrodeposition of Zn-Ni-Sn alloy[J].Journal of materials engineering,2006(4):37-40.
    [5]NAYANA K O,VENKATESHA T V,CHANDRAPPA KG.Influence of additive on nanocrystalline,bright Zn-Fe alloy electrodeposition and its properties[J].Surface&coatings technology,2013,235:461-468.
    [6]ESFAHANI M,MUNIR K S,WEN C,et al.Mechanical properties of electrodeposited nanocrystalline and ultrafine-grained Zn-Sn coating[J].Surface&coatings technology,2018,333:71-80.
    [7]GARCIA J R,LOGO D C B D,CESAR D V,et al.Pulsed cobalt-rich Zn-Co alloy coatings produced from citrate bath[J].Surface&coatings technology,2016,306:462-472.
    [8]TAFRESHI M,ALLAHKARAM S R,FARHANGI H.Comparative study on structure,corrosion properties and tribological behavior of pure Zn and different Zn-Ni alloy coatings[J].Materials chemistry and physics,2016,183:263-272.
    [9]RASHMI S,ELIAS L,HEGDE A C.Multilayered Zn-Ni alloy coatings for better corrosion protection of mild steel[J].Engineering science and technology,2017,20:1227-1232.
    [10]秦毅红,黄草明.电沉积Zn-Mn合金的工艺研究[J].电镀与涂饰,2006,25(9):8-12.QIN Yi-hong,HUANG Cao-ming.Study on electrodeposition technology of Zn-Mn alloy[J].Electroplating&finishing,2006,25(9):8-12.
    [11]GANESAN S,PRABHU G,POPOV B N.Electrodeposition and characterization of Zn-Mn coating for corrosion protection[J].Surface&coatings technology,2014,238:243-251.
    [12]CLOSE D,STEIN N,ALLAIN N,et al.Electrodeposition,microstructural characterization and anticorrosive properties of Zn-Mn alloy coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium thiocyanate[J].Surface&coatings technology,2016,298:73-82.
    [13]LOUKIL N,FEKI M.Zn-Mn alloy coatings from acidic chloride bath:effect of deposition conditions on the Zn-Mn electrodeposition-morphological and structural characterization[J].Applied surface science,2017,410:574-584.
    [14]GUO J C,GUO X W,WANG S H,et al.Effect of glycine and current density on the mechanism of electrodeposition,composition and properties of Ni-Mn films prepared in ionic liquid[J].Applied surface science,2016,365:31-37.
    [15]TZEC F I L,CANUL L C,OSKAM G.Electrodeposition of copper into trenches from a citrate plating bath[J].Electrochimica acta,2011,56:9391-9396.
    [16]MECH K.Influence of organic ligands on electrodeposition and surface properties of nickel films[J].Surface&coatings technology,2017,315:232-239.
    [17]FRANK A C,SUMODJO P T A.Electrodeposition of cobalt from citrate containing baths[J].Electrochimica acta,2014,132:75-82.
    [18]WANG J,LIU S R,MU Y N,et al.Sodium citrate complexing agent-ependent growth of n-and p-type CdTe thin films for applications in CdTe/CdS based photovoltaic[J].Journal of alloys and compounds,2018,748:515-521.
    [19]SLUPSKA M,OZGA P.Electrodeposition of Sn-Zn-Cu alloy from citrate solutions[J].Electrochimica acta,2014,141:149-160.
    [20]SHIN S,PARK C,KIM C,et al.Cyclic voltammetry studies of copper,tin and zinc electrodeposition in a citrate complex system for CZTS solar cell application[J].Current applied physics,2015,16(2):207-210.
    [21]YUAN L,DING Z Y,LIU S J,et al.Effect of additives on zinc electrodeposition from alkaline zincate solution[J].Transactions of nonferrous metals society of China,2017,27(7):1656-1664.
    [22]MECH K.Influence of organic ligands on electrodeposition and surface properties of nickel films[J].Surface&coatings technology,2017,315:232-239.
    [23]WU W P,JIANG J J,JIANG P,et al.Electrodeposition of nickel-iridium alloy films from aqueous solutions[J].Applied surface science,2018,307-317.
    [24]KAZIMIERCZAK H,HARA A,BIGOS A,et al.Electrodeposition of Zn-Mn-Mo layers from citrate-based aqueous electrolytes[J].Electrochimica acta,2016,202:110-121.
    [25]KAZIMIERCZAK H,OZGA P,SOCHA R P.Investigation of electrochemical co-deposition of zinc and molybdenum from citrate solutions[J].Electrochimica acta,2013,104:378-390.
    [26]王淼.柠檬酸盐在电沉积铁基合金中的行为研究[D].长沙:湖南大学,2006.WANG Niao.The behavior research of citrate in electroplating ferrous alloys[D].Changsha:Hunan University,2006.
    [27]OSIPENKO A,MAERSHIN A,SMOLENSKI V,et al.Electrochemistry of oxygen-free curium compounds in fused NaCl-2CsCl eutectic[J].Journal of nuclear materials,2010,396:102-106.
    [28]陈微,廖玲文,何政达,等.利用K-L方程估算旋转圆盘电极体系反应动力学电流的误差来源分析[J].电化学,2014,20(5):444-451.CHEN Wei,LIAO Ling-wen,HE Zheng-da,et al.On the origin of the error of IK as estimated from K-L equation in rotating disk electrode system[J].Journal of electrochemistry,2014,20(5):444-451.
    [29]MARANOWSKI B,STRAWSKI M,OSOWIECKI W,et al.Study of selenium electrodeposition at gold electrode by voltammetric and rotating disc electrode techniques[J].Journal of electroanalytical chemistry,2015,752:54-59.
    [30]LEHMAN E B,INDYKA P,BIGOS A,et al.Effect of hydrodynamic conditions of electrodeposition process on microstructure and functional properties of Ni-W/ZrO2nanocomposites[J].Journal of electroanalytical chemistry,2016,775:27-36.
    [31]LI C Q,LI X H,WANG Z X,et al.Mechanism of nanocrystalline nickel electrodeposition from novel citrate bath[J].Rare metal materials and engineering,2015,44(7):1561-1567.
    [32]AABOUBI O,DOUGLADE J,ABENAQUI X,et al.Influence of tartaric acid on zinc electrodeposition from sulphate bath[J].Electrochimica acta,2011,56(23):7885-7889.
    [33]RAEISSI K,SAATCHI A,GOLOZAR M A,et al.The effect of electrochemical adsorbates on texture and morphology development during zinc and zinc-cobalt electrodepositions[J].Electrochimica acta,2008,53(14):4674-4678.
    [34]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报(自然科学版),2001,30(4):53-61.CUI Xiao-li,JIANG Zhi-yu.The plot formats and applications of electrochemical impedance spectroscopy[J].Journal of Shanghai Teachers University(natural sciences),2001,30(4):53-61.
    [35]KAZAZI M.Effect of electrodeposition current density on the morphological and pseudocapacitance of porous nano-spherical MnO2 electrode[J].Ceramics international,2018,44:10863-10870.
    [36]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.CAO Chu-nan,ZHANG Jian-qing.Introduction of electrochemical impedance spectroscopy[M].Beijing:Science Press,2002.
    [37]KAZIMIERCZAK H,OZGA P,SOCHA R P,et al.Investigation of electrochemical co-deposition of zinc and molybdenum from citrate solutions[J].Electrochimica acta,2013,104:378-390.
    [38]CHEN Z H,MA Z P,SONG J J,et al.Novel one-step synthesis of wood-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution[J].Journal of power sources,2016,324:86-96.
    [39]WANG S H,GUO X W,TANG H Y,et al.Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid[J].Applied surface science,2014,288:530-536.
    [40]李超群,李新海,王志兴,等.柠檬酸钠溶液中镍电结晶机制[J].中南大学学报(自然科学版),2015,45(8):2797-2803.LI Chao-qun,LI Xin-hai,WANG Zhi-xing,et al.Mechanism of electrocrystallization of nickel in sodium citrate solution[J].Journal of Central South University(science and technology),2015,45(8):2797-2803.
    [41]LOUKIL N,FEKI M.Zn-Mn alloy coatings from acidic chloride bath:Effect of deposition conditions on the Zn-Mn electrodeposition-morphological and structural characterization[J].Applied surface science,2017,410:574-584.
    [42]GANESAN S,PRABHU G,POPOV B N.Electrodeposition and characterization of Zn-Mn coatings for corrosion protection[J].Surface&coatings technology,2014,238:143-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700