非定常气动力对垂起固定翼无人机动力学的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Unsteady Aerodynamic Forces on VTOL Fixed-Wing UAV Dynamics
  • 作者:吴翰 ; 王正平 ; 周洲 ; 王睿
  • 英文作者:Wu Han;Wang Zhengping;Zhou Zhou;Wang Rui;School of Aeronautics, Northwestern Polytechnical University;National Key Laboratory of Special Technology on UAV, Northwestern Polytechnical University;
  • 关键词:垂起固定翼无人机 ; 迟滞环 ; ONERA方程 ; 多体动力学 ; 凯恩方程
  • 英文关键词:VTOL fixed-wing UAV;;hysteresis loop;;ONERA equation;;multibody dynamics;;Kane equation
  • 中文刊名:HKBQ
  • 英文刊名:Aero Weaponry
  • 机构:西北工业大学航空学院;西北工业大学无人机特种技术国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:航空兵器
  • 年:2019
  • 期:v.26;No.310
  • 基金:装备预研项目(41411020401);; 航空科学基金项目(2016ZA53002)
  • 语种:中文;
  • 页:HKBQ201902003
  • 页数:8
  • CN:02
  • ISSN:41-1228/TJ
  • 分类号:25-32
摘要
由于垂起固定翼无人机结构复杂,无论是采用数值模拟得到其非定常气动力还是采用单刚体建模方法建立其动力学模型都较为困难。为了解决该问题,通过CFD数值模拟机翼翼型的迟滞环线,引入无人机俯仰运动所产生的迟滞效应,通过ONERA方程建立无人机垂起改平飞过程的非定常气动力模型,最终基于多体动力学,将无人机划分成机翼、机身、旋翼、舵面的多刚体系统,通过凯恩方程推导并建立无人机动力学模型,通过数值仿真可以发现:多体动力学的方法适用于这类结构复杂无人机的建模,引入机翼的迟滞环对无人机的俯仰运动起阻尼作用;引入非定常气动力与未引入非定常气动力相比垂起速度存在8%的差异,垂起改平飞过程结束时两者上升速度存在40%的差异。
        Due to the complicated structure of the VTOL fixed-wing UAV, it is difficult to establish its dynamic model by the method of single rigid modeling and obatin the unsteady aerodynamic forces by numerical simulation. In order to solve these problems, considering the effects of hysteresis loop, the hysteresis loop of airfoil is simulated by CFD. Then, the unsteady aerodynamic forces model of the process from the taking-off to cruising of the UAV by the ONERA equation is established. Finally, based on the multi-body dynamics method, the UAV, as a multi-rigid system, is divided into wing, fuselage, rotor and rudder surface. The dynamic model of the UAV is deduced and established by Kane equation. Through the results of numerical simulation, it can be found that the multi-body dynamics method is suitable for the modeling of this kind of UAV. The hysteresis loop has a damping influence on the pitching of UAV, and there are 8% difference between the UAV vertical taking-off velocity with unsteady aerodynamic forces and that without unsteady aerodynamic forces, and 40% difference of rising velocity between them when the UAV accomplished the process from vertical taking-off to flat flight.
引文
[1] Kim S K,Tilbury D M.Mathematical Modeling and Experimental Identification of a Model Helicopter[C]//AIAA Modeling and Simulation Technologies Conference and Enhibit,AIAA-98-4357,Boston,1998,203-213.
    [2] DeTore J,Conway S.Technology Needs for High Speed Rotorcraft(3),NASA-CR-177592[R].1991.
    [3] 李家乐,王正平.基于Lagrange方法的单旋翼飞行器动力学建模[J].飞行力学,2016,34(4):15-18.Li Jiale,Wang Zhengping.Dynamics Modeling for Monowing Rotorcraft Using Lagrange Method[J].Flight Dynamics,2016,34(4):15-18.(in Chinese)
    [4] 李家乐.弧翼飞行器飞行控制与仿真[D].西安:西北工业大学,2016:32-43.Li Jiale.Research on Control and Simulation for a Cambered Wing Vehicle[D].Xi’an:Northwestern Polytechnical University,2016:32-43.(in Chinese)
    [5] Hogan F R,Forbes J R.Modeling of Spherical Robots Rolling on Generic Surfaces[J].Multibody System Dynamics,2015,35(1):91-109.
    [6] 曹芸芸.倾转旋翼飞行器飞行动力学数学建模方法研究[D].南京:南京航空航天大学,2012:29-63.Cao Yunyun.Research on Mathematical Modeling Method for Tilt Rotor Aircraft Flight Dynamics[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012:29-63.(in Chinese)
    [7] Kane T R,Likins P W,Levinson D A.Spacecraft Dynamics[M].New York:McGraw-Hill Book Company,1983.
    [8] Zhao Zhenjun,Ren Gexue.Multibody Dynamic Approach of Flight Dynamics and Nonlinear Aeroelasticity of Flexible Aircraft [J].AIAA Journal,2011,49 (1):41-54.
    [9] 乔宇航,马东立,李陟.螺旋桨/机翼相互干扰的非定常数值模拟[J].航空动力学报,2015,30(6):1366-1373.Qiao Yuhang,Ma Dongli,Li Zhi.Unsteady Numerical Simulation of Propeller/Wing Interaction[J].Journal of Aerospace Power,2015,30(6):1366-1373.(in Chinese)
    [10] 袁先旭,张涵信,谢昱飞.基于CFD方法的俯仰静、 动导数数值计算[J].空气动力学学报,2005,23(4):458-463.Yuan Xianxu,Zhang Hanxin,Xie Yufei.The Pitching Static/Dynamic Derivatives Computation Based on CFD Methods[J].Acta Aerodynamica Sinica,2005,23(4):458-463.(in Chinese)
    [11] East R A,Hutt G R.Comparison of Predictions and Experimental Data for Hypersonic Pitching Motion Stability [J].Journal of Spacecraft and Rockets,1998,25(3):225-233.
    [12] 刘罗成,徐敏,姚伟刚,等.翼型纵向俯仰非定常气动力研究[J].飞行力学,2011,29(4):28-31.Liu Luocheng,Xu Min,Yao Weigang,et al.Study of Hypersonic Airfoil Pitch Oscillation Unsteady Aerodynamic Force[J].Flight Dynamics,2011,29(4):28-31.(in Chinese)
    [13] Kim T,Dugundji J.Nonlinear Large Amplitude Aeroelastic Behavior of Composite Rotor Blades[J].AIAA Journal,1993,31(8):1489-1497.
    [14] 林学海,任勇生.基于ONERA气动力模型的风力机叶片颤振时域分析[J].山东科技大学学报:自然科学版,2009,28(3):56-60.Lin Xuehai,Ren Yongsheng.Analysis of Flutter Time-Domain for Blades of Wind Turbine Based on the ONERA Aerodynamic Model[J].Journal of Shandong University of Science and Technology:Natural Science,2009,28(3):56-60.(in Chinese)
    [15] Forbes J R,Barfoot T D,Damaren C J.Dynamic Modeling and Stability Analysis of a Power-Generating Tumbleweed Rover[J].Multibody System Dynamics,2010,24(4):413-439.
    [16] 蒋达.新型无刷直流电动机建模与仿真研究[D].南宁:广西大学,2012:17-19.Jiang Da.Research on Modeling and Simulation of New Type Brushless DC Motor[D].Nanning:Guangxi University,2012:17-19.(in Chinese)
    [17] 夏丹,陈维山,刘军考,等.基于Kane方法的仿鱼机器人波状游动的动力学建模[J].机械工程学报,2009,45(6):41-49.Xia Dan,Chen Weishan,Liu Junkao,et al.Dynamic Modeling of a Fishlike Robot with Undulatory Motion Based on Kane’s Method[J].Journal of Mechanical Engineering,2009,45(6):41-49.(in Chinese)
    [18] Tarn T J,Shoults G A,Yang S P.A Dynamic Model of Underwater Vehicle with a Robotics Manipulator Using Kane’s Method[J].Autonomous Robots,1996,3(2-3):269-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700