红叶石楠吸附不同粒径颗粒物能力及光合响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption capacity and photosynthetic response of Photinia fraseri on different particle sizes
  • 作者:吴海天 ; 杨山 ; 陈健 ; 王彬 ; 刘美华 ; 沈剑 ; 郑国良
  • 英文作者:WU Haitian;YANG Shan;CHEN Jian;WANG Bin;LIU Meihua;SHEN Jian;ZHENG Guoliang;State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University;Jinhua Forestry Technology Extension Station;
  • 关键词:颗粒物 ; 光合响应 ; 红叶石楠 ; 蜡质层 ; 非直角双曲线模型
  • 英文关键词:particulate matter;;photosynthetic responses;;Photinia fraseri;;wax layer;;non-rectangular hyperbola model
  • 中文刊名:FJND
  • 英文刊名:Journal of Fujian Agriculture and Forestry University(Natural Science Edition)
  • 机构:浙江农林大学省部共建亚热带森林培育国家重点实验室;金华市林业技术推广站;
  • 出版日期:2018-09-18
  • 出版单位:福建农林大学学报(自然科学版)
  • 年:2018
  • 期:v.47
  • 基金:国家自然科学基金资助项目(41471442、41101421)
  • 语种:中文;
  • 页:FJND201805013
  • 页数:7
  • CN:05
  • ISSN:35-1255/S
  • 分类号:90-96
摘要
城市中园林植物可作为天然过滤器来吸附空气中的颗粒物,其中红叶石楠(Photinia fraseri)的运用尤为广泛.分析红叶石楠对不同粒径颗粒物滞留能力及其光合响应,可为城市滞尘树种的选择及后期管理提供重要参考.本文通过比较滞尘前后叶片的光响应曲线及特征参数,分析了红叶石楠叶表面及蜡质层对不同颗粒物的滞留量,滞尘叶片光合响应,及两者之间的相关关系.研究结果如下:(1)红叶石楠吸附sPM100(粒径10~100μm的叶表面颗粒物)质量最大且显著高于wPM100(粒径10~100μm的蜡质层颗粒物).sPM10(粒径2.5~10μm的叶表面颗粒物)与wPM10(粒径2.5~10μm的蜡质层颗粒物)之间、sPM_(2.5)(粒径0.2~2.5μm的叶表面颗粒物)与wPM_(2.5)(粒径0.2~2.5μm的蜡质层颗粒物)之间的质量无显著差异.(2)红叶石楠光合响应特征参数:表观量子效率(AQY)、最大净光合效率(Pnmax)、光饱和点(LSP)在滞尘后均显著降低.(3)粗、细颗粒物(粒径0.2~10μm)相较于大颗粒物(粒径10~100μm)对红叶石楠光合响应影响更大,特别是sPM10、sPM_(2.5)以及wPM_(2.5).
        Garden plants in the city can be used as natural filters to adsorb particulate matter in the air,among which Photinia fraseri is widely used. Analysis of the retention ability and photosynthetic response of P.fraseri to different particle sizes can provide important reference for selection and later management of urban dust trap tree species. Through comparison of light response curves and characteristic parameters of leaves before and after dust retention,we analyzed the retention of different particles on the surface and wax layer of P.fraseri leaves,the photosynthetic response of dust leaves,and the correlation between them. The results were as follows:( 1) P.fraseri had the highest adsorption capacity to sPM100( leaf surface particle size of 10-100 μm),and significantly higher than wPM100( waxy layer particle size of 10-100 μm). There was no significant difference in the adsorption capacity between sPM10( leaf surface particle size of 2.5-10 μm) and sPM10( waxy layer particle size of 2.5-10 μm),and between sPM_(2.5)( leaf surface particle size of 0.2-2.5 μm) and wPM_(2.5)( waxy layer particle size of 0.2-2.5 μm).( 2) Photosynthetic response characteristic parameters,including the apparent quantum efficiency( AQY),maximum net photosynthetic efficiency( Pnmax),light saturation point( LSP) in the dust were significantly decreased.( 3) The coarse and fine particles( diameter 0.2-10 μm) compared with the large particles( diameter 10-100 μm) had more influence on the photosynthetic response,especially in sPM10,sPM_(2.5) and wPM_(2.5).
引文
[1]王兵,王晓燕,牛香,等.北京市常见落叶树种叶片滞纳空气颗粒物功能[J].环境科学,2015,36(6):2 005-2 009.
    [2]吴兑,邓雪娇,毕雪岩,等.细粒子污染形成灰霾天气导致广州地区能见度下降[J].热带气象学报,2007,23(1):1-6.
    [3]韩永全.雾霾形成的物理原理解析[J].应用物理,2014,4(4):39-45.
    [4]DOCKERY D W,POPE C A,XU X,et al. An association between air pollution and mortality in six U.S. cities[J]. The New England Journal of Medicine,1993,329(24):1 753-1 759.
    [5]AARON J C,ANDERSON H R,BART O,et al. The Global burden of disease due to outdoor air pollution[J]. Journal of Toxicology and Environmental Health. Part A:Current Issues,2005,68(13):1 297-1 301.
    [6]POPEK R,GAWRO N'SKA H,WROCHNA M,et al. Particulate matter on foliage of 13 woody species:deposition on surfaces and phytostabilisation in waxes-a 3 year Study[J]. International Journal of Phytoremediation,2013,15(3):245-256.
    [7]NOWAK D J,HIRABAYASHI S,BODINE A,et al. Modeled Pm2.5 removal by trees in ten U.S. cities and associated health effects[J]. Environmental Pollution,2013,178:395-402.
    [8]TIWARY A,SINNETT D,PEACHEY C,et al. An integrated tool to assess the role of new planting in Pm10 capture and the human health benefits:a case study in london[J]. Environmental Pollution,2009,157(10):2 645-2 653.
    [9]王会霞,石辉,李秧秧.城市绿化植物叶片表面特征对滞尘能力的影响[J].应用生态学报,2010,21(12):3 077-3 082.
    [10]张维康,王兵,牛香.北京不同污染地区园林植物对空气颗粒物的滞纳能力[J].环境科学,2015,36(7):2 381-2 388.
    [11]唐敏忠,汉瑞英,陈健.植物叶片吸附大气颗粒物的研究综述[J].北方园艺,2015(11):187-192.
    [12]SONG YINGSHI,MAHER B A,LI F,et al. Particulate matter deposited on leaf of five evergreen species in Beijing,China[J]. Atmospheric Environment,2015,105:53-60.
    [13]VAN H P,KRGER G,KILBOURN L M. Dynamic responses of photosystemⅡin the namib desert shrub,zygophyllum prismatocarpum,during and after foliar deposition of limestone Dust[J]. Environmental Pollution,2007,146(1):34-45.
    [14]张娇,施拥军,朱月清,等.浙北地区常见绿化树种光合固碳特征[J].生态学报,2013,33(6):1 740-1 750.
    [15]许大全.光合作用测定及研究中一些值得注意的问题[J].植物生理学通讯,2006,42(6):1 163-1 167.
    [16]PRZYBYSZ A,POPEK R,GAWRO N'SKA H,et al. Efficiency of photosynthetic apparatus of plants grown in sites differing in level of particulate matter[J]. Acta Sci Pol,Hortorum Cultus,2014,13(1):17-30.
    [17]芦建国.红叶石楠在园林中的应用[J].现代农业科技,2007(1):40-41.
    [18]吴丽君.红叶石楠推广应用现状及前景分析[J].福建林业科技,2009,36(2):145-148,161.
    [19]房瑶瑶,王兵,牛香.陕西省关中地区主要造林树种大气颗粒物滞纳特征[J].生态学杂志,2015,34(6):1 516-1 522.
    [20]樊慧敏,赵志军,贾春波,等.石楠与红叶石楠光合特性的比较[J].浙江农业学报,2009,21(5):468-471.
    [21]PAL A,KULSHRESHTHA K,AHMAD K,et al. Do leaf surface characters play a role in plant resistance to auto-exhaust pollution?[J]. Flora,2002,197(1):47-55.
    [22]李婧婧,黄俊华,谢树成.植物蜡质及其与环境的关系[J].生态学报,2011,31(2):565-574.
    [23]韩瑞锋,李建明,胡晓辉,等.甜瓜幼苗叶片光合变化特性[J].生态学报,2012,32(5):1 471-1 480.
    [24]段爱国,张建国.光合作用光响应曲线模型选择及低光强属性界定[J].林业科学研究,2009,31(6):765-771.
    [25]叶子飘,于强.光合作用光响应模型的比较[J].植物生态学报,2008,32(6):1 356-1 361.
    [26]叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740.
    [27]何季,吴波,鲍芳,等.荒漠植物白刺对模拟增雨的光合响应机制[J].林业科学,2015,51(6):27-35.
    [28]余曼,汪正祥,雷耘,等.武汉市主要绿化树种滞尘效应研究[J].环境工程学报,2009,3(7):1 333-1 339.
    [29]SGRIGNA G,SABO A,GAWRONSKI S,et al. Particulate matter deposition on Quercus Ilex leaves in an Industrial city of central Italy[J]. Environmental Pollution,2015,197:187-194.
    [30]王荣荣,夏江宝,杨吉华,等.贝壳砂生境酸枣叶片光合生理参数的水分响应特征[J].生态学报,2013,33(19):6 088-6 096.
    [31]VARDAKA E,COOK C M,LANARAS T,et al. Effect of dust from a limestone quarry on the photosynthesis of Quercus coccifera,an evergreen schlerophyllous shrub[J]. Bulletin of Environmental Contamination and Toxicology,1995,54(3):414-419.
    [32]HIRANO T,KIYOTA M,AIGA I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants[J]. Environmental Pollution,1995,89(3):255-261.
    [33]SAEBO A,POPEK R,NAWROT B. Plant species differences in particulate matter accumulation on leaf surfaces[J]. Science of the Total Environment,2012,427:347-354.
    [34]XIONG Z T. Bioaccumulation and physiological effects of excess lead in a roadside pioneer species sonchus Oleraceus L.[J].Environmental Pollution,1997,97(3):275-279.
    [35]PRUSTY B A K,MISHRA P C,AZEEZ P A. Dust accumulation and leaf pigment content in vegetation near the national highway at sambalpur,Orissa,India[J]. Ecotoxicology and Environmental Safety,2004,60(2):35-228.
    [36]TAKAGI M,GYOKUSEN K. Light and atmospheric pollution affect photosynthesis of street trees in urban environments[J].Urban Forestry&Urban Greening,2004,2(3):167-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700