一次离心运动对大鼠骨骼肌线粒体移动相关蛋白表达的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of an Eccentric Exercise on Mitochondrial Movement Related Proteins in Skeletal Muscle of Rats
  • 作者:于滢 ; 于亮 ; 李云广 ; 李俊平 ; 周越 ; 王宏坤 ; 武俸羽 ; 王瑞元
  • 英文作者:YU Ying;YU Liang;LI Yunguang;LI Junping;ZHOU Yue;WANG Hongkun;WU Fengyu;WANG Ruiyuan;Department of Sports Science and Health,Harbin Institute of P.E.;Kinesiology School,Beijing Sport University;Dept of P.E.,Heilongjiang University of Science and Technology;
  • 关键词:离心运动 ; 大鼠 ; 骨骼肌 ; 线粒体移动
  • 英文关键词:eccentric exercise;;rat;;skeletal muscle;;mitochondria movement
  • 中文刊名:SYTB
  • 英文刊名:Journal of Shenyang Sport University
  • 机构:哈尔滨体育学院运动科学与健康系;北京体育大学运动人体科学学院;黑龙江科技大学体育部;
  • 出版日期:2017-01-17 15:15
  • 出版单位:沈阳体育学院学报
  • 年:2016
  • 期:v.35;No.164
  • 基金:哈尔滨体育学院校级学术骨干课题(2016XJ007);; 国家自然科学基金项目(31471133);; 中央高校基本科研业务费专项资金资助北京体育大学自主科研课题(2015ZD004,2015YB007,2016yb018,2016RB010,2016yb047)
  • 语种:中文;
  • 页:SYTB201606011
  • 页数:6
  • CN:06
  • ISSN:21-1081/G
  • 分类号:65-70
摘要
目的:观察一次离心运动后线粒体移动相关蛋白的表达变化。方法:42只SD大鼠经适应后随机分为安静组(6只)和离心运动组(36只)。离心运动组在跑台上进行90 min速度为16 m/min的离心运动,坡度-16°。运动后分别在即刻、6 h、12 h、24 h、48 h和72 h取材。Western blotting测定骨骼肌Miro1、Miro2、KIF5B、VDAC1、Dynlt1蛋白的表达。结果:一次离心运动后,与安静组相比,离心运动后各时间点Miro1、Miro2蛋白表达显著升高;KIF5B变化不显著;VDAC1在6 h、12 h、24 h和72 h显著升高;Dynlt1蛋白表达在运动后6 h和48 h显著升高。结论:一次离心运动后骨骼肌中Miro、VDAC1和Dynlt1蛋白表达上调,表明离心运动损伤后骨骼肌线粒体移动活跃,有利于离心运动导致的骨骼肌损伤修复。
        Objective:Mitochondria movement related proteins are observed after an eccentric exercise.Methods:42 SD rats are randomly divided into quiet group(6 rats) and an eccentric exercise group(36 rats) after adaptation.Exercise group rats should run on the treadmill,-16°,16m/min,90 min.Experimental samplings are taken after exercise immediately,6hours,12 hours,24 hours,48 hours and 72 hours.Western blotting is used to detect Miro1,Miro2,KIF5 B,VDAC1 and Dynltl protein expression.Results:Compared with the quiet group,the protein expressions of Mirol and Miro2 are increased significantly and the change of KIF5 B is not significant after an eccentric exercise.The protein expressions of VDAC1 are increased in exercise group after 6 hours,12 hours,24 hours,48 hours and 72 hours significantly and Dynltl are increased after 6 hours and 48 hours.Conclusion:The increase of Miro,VDAC1 and Dynltl protein expression after an eccentric exercise in skeletal muscle showed that mitochondria were active after exercise,which was beneficial to the repair of skeletal muscle damage after exercise.
引文
[1]JoséM G.Mitochondrial structure,composition,and dynamics[M]//Mitochondria and Their Role in Cardiovascular Disease.Springer,US,2013:29-57.
    [2]Nogales E.Structural insights into microtubule function[J].Annual Review of Biochemistry,2000,69(1):277-302.
    [3]徐荣归.分子马达运动机制的动力学研究[D].上海:东华大学,2006.
    [4]Hollenbeck P J,Saxton W M.The axonal transport of mitochondria[J].Journal of Cell Science,2005,118(23):5411-5419.
    [5]Leidel C P.Measuring molecular motor forces to probe transport regulation in vivo[D].Austin:The University of Texas,2013.
    [6]于琨,韩英荣,展永,等.分子马达的调节机制[J].现代物理知识,2008,20(4):24-28.
    [7]Cai Q,Sheng Z H.Mitochondrial transport and docking in axons[J].Experimental neurology,2009,218(2):257-267.
    [8]Miki H,Setou M,Kaneshiro K,et al.All kinesin superfamily protein,KIF,genes in mouse and human[J].Proceedings of the National Academy of Sciences,2001,98(13):7004-7011.
    [9]Vicario-Orri E,Opazo C,Muoz F J.The pathophysiology of axonal transport in alzheimer’s disease[J].Journal of Alzheimer’s Disease,2015,43(4):1097-1113.
    [10]Nobutaka Hirokawa.From electron microscopy to molecular cell biology,molecular genetics and structural biology:intracellular transport and kinesin[J].Journal of Electron Microscopy 60(Supplement 1)2011:S63-S92.
    [11]Istvan R.Boldogh,Liza A.Pon.Mitochondria on the move[J].TRENDS in Cell Biology,2007,17(10):502-510.
    [12]Santama N,Connie P N,Ong L L,et al.Distribution and functions of kinectin isoforms[J].Journal of Cell Science,2004,117(19):4537-4549.
    [13]邵建林,彭沛华,周银燕,等.HO-1对氧糖剥夺海马神经元线粒体运动调节蛋白的影响[J].昆明医科大学学报,2012(4):4-7.
    [14]Glater E E,Megeath L J,Stowers R S,et al.Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent[J].The Journal of Cell Biology,2006,173(4):545-557.
    [15]Wang Z.Kinesin-1 in skeletal muscle[D].Hong Kong:The University of Hong Kong,2008.
    [16]Tanaka Y,Kanai Y,Okada Y,et al.Targeted disruption of mouse conventional kinesin heavy chain kif5 B,results in abnormal perinuclear clustering of mitochondria[J].Cell,1998,93(7):1147-1158.
    [17]Fransson,Ruusala A,Aspenstrm P.Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis[J].Journal of Biological Chemistry,2003,278(8):6495-6502.
    [18]Yi M,Weaver D,Hajnóczky G.Control of mitochondrial motility and distribution by the calcium signal a homeostatic circuit[J].The Journal of Cell Biology,2004,167(4):661-672.
    [19]Macaskill AF,Rinholm JE,Twelvetrees AE,et al.Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses[J].Neuron,2009,61(4):541-555.
    [20]王圣柳,孙飞.Dynactin辅助dynein进行细胞内物质运输的研究进展[J].生物物理学报,2012,28(10):785-793.
    [21]Al-Mehdi A B,Pastukh V M,Swiger B M,et al.Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription[J].Science signaling,2012,231(5):1-20.
    [22]Williams J C,Siglin A E,Lightcap C M,et al.Structural analysis of dynein intermediate and light chains[J].Dyneins:Structure,Biology and Disease,2011:157.
    [23]房亚东.MAP4上调DYNLT1减轻缺氧早期线粒体通透性转换的作用及机制研究[D].重庆:第三军医大学,2009.
    [24]Fang Y,Xu X,Dang Y,et al.MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia:microtubule enhancement and DYNLT1 interaction with VDAC1[J].Plo S One,2011,6(12):e28052.
    [25]Armstong RB.Eccentric exercise-induced injury to skeletal muscle[J].Appl Phyiol,1983,54:80-93.
    [26]Hollenbeck P J,Saxton W M.The axonal transport of mitochondria[J].Journal of Cell Science,2005,118(23):5411-5419.
    [27]Pilling A D,Horiuchi D,Lively C M,et al.Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons[J].Molecular Biology of the Cell,2006,17(4):2057-2068.
    [28]陈邵宏,庞效云,孙飞.线粒体运动及其相关的细胞骨架和蛋白[J].生物物理学报,2011,27(12):1019-1029.
    [29]Zinsmaier K E,Babic M,Russo G J.Mitochondrial transport dynamics in axons and dendrites[M].Berlin:Springer Berlin Heidelberg,2009:361-381.
    [30]Fuchs F,Westermann B.Role of Unc104/KIF1-related motor proteins in mitochondrial transport in neurospora crassa[J].Molecular Biology of the Cell,2005,16(1):153-161.
    [31]姚斌彬.基于马达蛋白及NGF探寻推拿对坐骨神经损伤大鼠轴浆运输功能的影响及机理[D].北京:北京中医药大学,2013.
    [32]于晓伟,解玉珍,顾博雅,等.有氧运动调节驱动蛋白改善AD模型皮层线粒体轴突转运[J].北京体育大学学报,2016(6):63-68.
    [33]刘慧君,翟克敏,赵斐,等.线粒体移动相关基因miro1在急性运动中的表达特征[J].中国运动医学杂志,2010(2):173-176.
    [34]Masoud R,Reza G,Mansoureh M,et al.Treadmill training modifies KIF5 B motor protein in the STZ-induced diabetic rat spinal cord and sciatic nerve[J].Arch Iran Med,2015,18(2):94-101.
    [35]Tajeddine N,Galluzzi L,Kepp O,et al.Hierarchical involvement of Bak,VDAC1 and Bax in cisplatin-induced cell death[J].Oncogene,2008,27(30):4221-4232.
    [36]Geisler S,Holmstrm K M,Skujat D,et al.PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J].Nature Cell Biology,2010,12(2):119-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700