In-Sn-Beta分子筛催化微晶纤维素产乳酸
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Production of lactic acid from microcrystalline cellulose over In-Sn-Beta molecular sieves
  • 作者:苌城 ; 董文杰 ; 沈峥 ; 顾敏燕 ; 夏梦 ; 张亚雷
  • 英文作者:CHANG Cheng;DONG Wen-jie;SHEN Zheng;GU Min-yan;XIA Meng;ZHANG Ya-lei;College of Environmental Science and Engineering,Tongji University;Institute of New Rural Development,Tongji University;
  • 关键词:微晶纤维素 ; 乳酸 ; Zn-Sn-Beta分子筛 ; In-Sn-Beta分子筛
  • 英文关键词:microcrystalline cellulose;;lactic acid;;Zn-Sn-Beta molecular sieves;;In-Sn-Beta molecular sieves
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:同济大学环境科学与工程学院污染控制与资源化研究国家重点实验室;同济大学新农村发展研究院;
  • 出版日期:2017-12-25 13:18
  • 出版单位:现代化工
  • 年:2018
  • 期:v.38;No.376
  • 基金:国家自然科学基金(21676205)
  • 语种:中文;
  • 页:XDHG201802015
  • 页数:5
  • CN:02
  • ISSN:11-2172/TQ
  • 分类号:72-75+77
摘要
在从生物质合成的各种化学品中,乳酸以其多功能、高需求的特点,展现出巨大的市场潜力。区别于传统发酵的生产方式,采用Zn-Sn-Beta和In-Sn-Beta分子筛催化剂进行一步法催化结晶纤维素生产的研究,结果发现,Zn-Sn-Beta和In-Sn-Beta分子筛的催化效果要优于单金属催化剂Zn-Beta和In-Beta。在纤维素的质量为215 mg,水的用量为5 m L,催化剂质量为160 mg,反应温度为200℃,反应时间为4 h的最佳反应条件下,2种分子筛催化产生的可溶性有机物比率均接近60%,乳酸产率约为20%。其中,催化产乳酸产率最高达24.7%的In-Sn-Beta分子筛重复使用效果较好,3次使用过后仍能将产率维持在20%以上。利用双金属分子筛催化纤维素产乳酸为替代化石燃料的可持续发展途径提供了重要的基础参考数据。
        As a renewable resource,biomass,with huge quantity and extensive sources,can be used to produce platform chemical substitutions for fossil resources like coal and oil. Among those chemicals,lactic acid extends promising potential in the market due to its multifunction and high demand. Instead of conventional fermentation production method,this paper focuses on the production of lactic acid through one-pot catalytic conversion of microcrystalline cellulose over Zn-Sn-Beta and In-Sn-Beta molecular sieves,respectively. It is found that the catalytic effects of Zn-SnBeta and In-Sn-Beta molecular sieves are better than that of single-metal catalysts such as Zn-Beta and In-Beta. The ratio rates of soluble organic substances over Zn-Sn-Beta and In-Sn-Beta molecular sieves both approach to 60% and the yield rate of lactic acid both are around 20% when the reaction carries out under the optimal conditions that the dosages of cellulose,water and catalyst are 215 mg,5 m L and 160 mg respectively,and reaction lasts for 4 h at 200℃. Particularly,In-Sn-Beta molecular catalyst,over which the highest yield rate of lactic acid is 24. 7%,shows better recyclability that the yield of lactic acid still remains above 20% after three times repeated usages. The production of lactic acid from cellulose over dual-metal molecular sieves can provide important reference data for the sustainable development approach of replacing fossil fuels.
引文
[1]Yang S,Li J,Zheng Z,et al.Lignocellulosic structural changes of spartinaalterniflora after anaerobic mono-and co-digestion[J].International Biodeterioration and Biodegradation,2009,63(5):569-575.
    [2]徐继坤.离子液体解离木质纤维及纤维素材料的构建[D].北京:北京林业大学,2016.
    [3]Wilke I C R.Cellulose as a chemical and energy resource[C].Cellulose Conference(1975:University of California,Berkeley),Wiley,1975.
    [4]Li C,Zheng M,Wang A,et al.One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts:Simultaneous conversion of cellulose,hemicellulose and lignin[J].Energy and Environmental Science,2012,5(4):6383-6390.
    [5]Clark J,Deswarte F.Introduction to chemicals from biomass,second edition[M].Chichester:John Wiley&Sons,Ltd,2014.
    [6]Deng W,Zhang Q,Wang Y.Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural,levulinic acid,and lactic acid[J].Science China Chemistry,2015,58(1):29-46.
    [7]Zhuo K,Du Q,Bai G,et al.Hydrolysis of cellulose catalyzed by novel acidic ionic liquids[J].Carbohydrate Polymers,2015,115:49-53.
    [8]Zhao X,Zhang L,Liu D.Biomass recalcitrance.PartⅠ:The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose[J].Biofuels,Bioproducts and Biorefining,2012,6(4):465-482.
    [9]Gupta R,Lee Y.Mechanism of cellulase reaction on pure cellulosic substrates[J].Biotechnology and Bioengineering,2009,102(6):1570-1581.
    [10]Dusselier M,Mascal M,Sels B.Top chemical opportunities from carbohydrate biomass:A chemist's view of the biorefinery[C].in:Selective Catalysis for Renewable Feedstocks and Chemicals,Springer,1-40,2014.
    [11]Taarning E,Saravanamurugan S,Holm S,et al.Zeolite-catalyzed isomerization of triose sugars[J].Chem Sus Chem,2009,2(7):625-627.
    [12]Holm S,Saravanamurugan S,Taarning E.Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J].Science,2010,328(5978):602-605.
    [13]Holm S,Pagan-torres,J,Saravanamurugan S,et al.Sn-Beta catalysed conversion of hemicellulosic sugars[J].Green Chemistry,2012,14(3):702-706.
    [14]Dong W,Shen Z,Peng B,et al.Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a ZnSn-Beta Lewis acid-base catalyst[J].Scientific Reports,2016,(6):1-8.
    [15]Hanusa P.Reexamining the diagonal relationships[J].Journal of Chemical Education,1987,64(8):686-687.
    [16]Olah J,Veszpremi T,Nguyen T.Spin-philicity and spin-donicity of simple nitrenes and phosphinidenes[J].Chemical Physics Letters,2005,401(4-6):337-341.
    [17]Focher B,Palma T,Canetti M,et al.Structural differences between non-wood plant celluloses:Evidence from solid state NMR,vibrational spectroscopy and X-ray diffractometry[J].Industrial Crops and Products,2001,13(3):193-208.
    [18]Zhang J,Zhang J,Lin L,et al.Dissolution of microcrystalline cellulose in phosphoric acid-molecular changes and kinetics[J].Molecules,2009,14(12):5027-5041.
    [19]Minowa T,Fang Z,Ogi T,et al.Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions[J].Journal of Chemical Engineering of Japan,1998,31(1):131-134.
    [20]Luo C,Wang S,Liu H.Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J].Angewandte Chemie International Edition,2007,46(40):7636-7639.
    [21]Rosatella A,Simenov I P,Frade M,et al.Cheminform abstract:5-hydroxymethylfurfural(HMF)as a building block platform:Biological properties,synthesis and synthetic applications[J].Cheminform,2011,13(32):754-793.
    [22]Lewkowski J.Synthesis,chemistry and applications of 5-hydroxymethyl-furfural and its derivatives[J].Cheminform,2003,34(2):17-54.
    [23]顾禹.外加酶及碱处理提高秸秆厌氧发酵产沼气的研究[D].上海:同济大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700