番荔枝状聚苯胺-钒酸铋复合材料的制备及其光催化性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and photocatalytic properties of sweetsop-like PANI-BiVO_4 composite materials
  • 作者:周慧 ; 王元有 ; 金党琴 ; 顾智超
  • 英文作者:ZHOU Hui;WANG Yuanyou;JIN Dangqin;GU Zhichao;School of Chemical Engineering, Yangzhou Polytechnic Institute;
  • 关键词:钒酸铋-聚苯胺 ; 复合材料 ; 水热法 ; 可见光催化
  • 英文关键词:PANI-BiVO_4;;composite materials;;Hydrothermal method;;Visible light photocatalysis
  • 中文刊名:RZJS
  • 英文刊名:Textile Dyeing and Finishing Journal
  • 机构:扬州工业职业技术学院化学工程学院;
  • 出版日期:2018-09-20
  • 出版单位:染整技术
  • 年:2018
  • 期:v.40;No.305
  • 基金:扬州工业职业技术学院自然科技类2016年青年专项课题(2016xjzk007);; 江苏高校品牌专业建设工程资助项目(PPZY2015B180);; 江苏省高校自然科学基金项目(16KJB150044);; 2017年江苏省高等学校优秀科技创新团队(苏教科[2017]6号)
  • 语种:中文;
  • 页:RZJS201809006
  • 页数:9
  • CN:09
  • ISSN:32-1420/TQ
  • 分类号:25-33
摘要
以Bi(NO_3)_3·5H_2O和NH_4VO_3为原料,通过水热法合成出直径为600~1 000 nm的番荔枝状单斜晶系白钨矿结构BiVO_4材料,并通过简单浸渍的方法将聚苯胺(PANI)负载到BiVO4微纳米材料上。运用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X-射线衍射光谱(XRD)和紫外-可见光谱(UV-vis)等一系列的表征手段对所制备材料进行形貌和物相分析。以广泛使用的染料罗丹明B(RhB)为降解对象,考察了复合材料的可见光催化性能。结果表明,PANI负载质量分数为5%的PANI-BiVO_4复合微纳米材料表现出良好的可见光催化性能,在300 min内使RhB溶液的脱色率达到99.1%;这是由于PANI和BiVO_4之间的协同效应促进光生电子-空穴对的分离。同时,活性物种实验发现,h~+和·OH是5%的PANI-BiVO_4复合微纳米材料光催化降解RhB的两种主要活性物种。
        The diameter of 600~1 000 nmBiVO_4 with sweetsop-like monoclinic scheelite structure was synthesized based on Bi(NO_3)_3·5 H_2 O and NH_4 VO_3 via hydrothermal method. Polyaniline(PANI) was loaded onto the BiVO_4 micro-nano material by simple impregnation method. The morphology and phase of prepared material were analyzed by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray powder diffraction(XRD), ultraviolet-visible spectroscopy(UV-Vis) and a series of characterization methods. The visible light catalytic performance of the composite was investigated by widely used dye rhodamine B(RhB).The results showed thatPANI-BiVO_4 composite micro-nano material with a PANI load mass fraction of 5% presented good visible light catalytic performance. The degradation rate of RhB solution reached 99.1% within 300 min, which is due to the synergistic effect between PANI and BiVO_4 to facilitate the separation of photo-generated electron-hole pairs. Meanwhile, the active species experiment found that h~+ and ·OH were the main active species of 5%PANI-BiVO_4 composite micro-nano material for the photocatalytic degradation of RhB.
引文
[1]YE K H,CHA Z S,GU J W,et al.BiOI-BiVO4 photoanodes with significantly improved solar water splitting capability:p-n junction to expand solar adsorption range and facilitate charge carrier dynamics[J].Nano Energy,2015,18:222-231.
    [2]WANG M G,HU Y M,HAN J T,et al.TiO2/NiO hybrid shells:p-n junction photocatalysts with enhanced activity under visible light[J].J.Mater.Chem.A,2015,3:20 727-20 735.
    [3]TU W G,ZHOU Y,LIU Q,et al.Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2conversion into renewable fuels[J].Adv.Funct.Mater.,2012,22:1 215-1 221.
    [4]孙柳,王鹏.镧掺杂TiO2光催化降解酸性红B的研究[J].染整技术,2006,28(5):27-29.
    [5]YANG HG,SUN C H,QIAO S Z,et al.Anatase TiO2 single crystals with a large percentage of reactive facets[J].Nature,2008,453:638-641.
    [6]段芳,张琴,魏取福,等.铋系半导体光催化剂的光催化性能调控[J].化学进展,2014,26(1):30-40.
    [7]CHEN L,WANG J X,MENG D W,et al.Enhanced photocatalytic activity of hierarchically structured BiVO4 oriented along{040}facets with different morphologies[J].Mater.Lett.,2015,147:1-3.
    [8]HUANG H W,HAN X,LI X W,et al.Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI fullrange composites based on microstructure modulation and band structures[J].ACS Appl.Mater.,Interfaces,2015,7:482-492.
    [9]LI Z Q,CHEN X T,XUE Z L,et al.Bi2MoO6 microstructures:controllable synthesis,growth mechanism,and visible-light-driven photocatalytic activities[J].Cryst.Eng.Comm.,2013,15(15):498-508.
    [10]PAYNE D J,ROBINSON MDM,EGDELL RG,et al.The nature of electron lone pairs in BiVO4[J].Appl.Phys.Lett.,2011,98(21):37.
    [11]SAISON T,CHEMIN N,CHANéAC C,et al.New insights into BiVO4 properties as visible light photocatalyst[J].J.Phys.Chem.C,2015,119(23):12 967-12 977.
    [12]KIM Y,SHIN D,CHANG W J,et al.Hybrid Z-scheme using photosystem I and BiVO4 for hydrogen production[J].Adv.Funct.Mater.,2015,25(16):2 369-2 377.
    [13]PEREZ U M G,GUZMAN S S,CRUZ A M L et al.Photocatalytic activity of BiVO4 nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose[J].J.Mol.Catal.A:Chem.,2011,335(1-2):169-175.
    [14]GE L.Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange[J].J.Mol.Catal.A:Chem.,2008,282(1-2):62-66.
    [15]GUAN M L,MA D K,HU S W,et al.From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3microspheres:controlled synthesis and enhanced visible-light-responsive photocatalytic properties[J].Inorg.Chem.,2011,50:800-805.
    [16]MILCZAREKkG,LNGAN?S O.Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks[J].Science,2012,335:1 468-1 471.
    [17]GHOSH S,KOUAMéNA,RAMOS L,et al.Conducting polymer nanostructures for photocatalysis under visible light[J].Nat.Mater.,2015,14:505-511.
    [18]DU J,PEI S,MA L,et al.25th anniversary article:carbon nanotubeand graphene-based transparent conductive films for optoelectronic devices[J].Adv.Mater.,2014,26:1 958-1 991.
    [19]MACDIARMID A G,CHIANG J C,HUANG W,et al.Protonic acid doping to the metallic regime[J].Mol.Cryst.Liq.Cryst.,1985,125(6):309-318.
    [20]WAN M X.A template-free method towards conducting polymer nanostructures[J].Adv.Mater.,2008,20:2 926-2 932.
    [21]ZHU S B,XU TG,FU H B,et al.Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation[J].Environ.Sci.Technol.,2007,41:6 234.
    [22]RADI?I?M,?APONJI?Z,JANKOVI?I A,et al.Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles[J].Appl.Catal.B-Environ.,2013,136:133-139.
    [23]YU Q Z,WANG M,CHEN H Z,et al.Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures:preparation and their photocatalytic properties[J].Mater.Chem.Phys.,2011,129(1-2):666-672.
    [24]HE K,LI M T,GUO L J.Preparation and photocatalytic activity of PANI-CdS composites for hydrogen evolution[J].Int.J.Hydrogen Energy,2012,37(1):755-759.
    [25]ZOU T,WANG C,TAN R Q,et al.Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light[J].J.Hazard.Mater.,2017,338:276-286.
    [26]TAN G Q,ZHANG L L,REN H J,et al.Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4powders prepared via the microwave hydrothermal method[J].ACS Appl.Mater.Interfaces,2013,5:5 186-5 193.
    [27]WU J,YIN L.Platinum,nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor[J].ACS Appl.Mater.Interfaces,2011,3:4 354-4 362.
    [28]WANG Q Z,ZHENG L H,CHEN Y T,et al.Synthesis and characterization of novel PPy/Bi2O2CO3 composite with improved photocatalytic activity for degradation of Rhodamine-B[J].J.Alloys Compd.,2015,637:127-132.
    [29]CHEN L,SUN L J,LUAN F,et al.Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles[J].J.Power Sources,2010,195(11):3 742-3 747.
    [30]刘秀萍.钒酸铋光催化剂的制备、表征及其作用机理研究[D].福州:福建师范大学,2009.
    [31]Hu R P,XIAO X,TU S H,et al.Synthesis of flower-like heterostructuredβ-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol[J].Appl.Catal.,B:Environ.,2015,163:510-519.
    [32]WANG X,YU J C,HO C,et al.Micellar aggregates formed following the addition of hexafluoroisopropanol to phospholipid membranes[J].Langmuir,2005,21(2):552-559.
    [33]XU T G,ZHANG L W,CHENG H Y,et al.Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J].Appl.Catal.,B:Environ.,2011,101(3-4):382-387.
    [34]MANGESH G,VISWANATHAN B,VISWANATH RP,et al.Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue[J].Indian J.Chem.,2009,48A:480-488.
    [35]JIANG H Q,ENDO H,NATORI H,et al.Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation[J].Mater.Res.Bull.,2009,44(3):700-706.
    [36]SENADEERA G K R,KITAMURA T,WADA Y,et al.Deposition of polyaniline via molecular self-assembly on TiO2 and its uses as a sensitiser in solid-state solar cells[J].J.Photochem.Photobiol.,B:Biol.,2004,164(1-3):61-66.
    [37]YANG S X,CUI X J,GONG J.Synthesis of TiO2-polyaniline core-shell nanofibers and their unique UV photoresponse based on different photoconductive mechanisms in oxygen and non-oxygen environments[J].Chem.Commun.,2013,49:4 676-4 678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700