黄土丘陵沟壑区大空间尺度林草植被减沙方程的尺度适应性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Scale Adaptability of the Large-Scale Vegetation Reducing Sediment Equation in the Loess Hilly Region
  • 作者:罗娅 ; 杨胜天 ; 周秋文 ; 陈珂 ; 王志伟
  • 英文作者:LUO Ya;YANG Sheng-tian;ZHOU Qiu-wen;CHEN Ke;WANG Zhi-wei;State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities;School of Geographic and Environmental Sciences, Guizhou Normal University;
  • 关键词:黄土丘陵沟壑区大空间尺度林草植被减沙方程 ; 适应性 ; 空间尺度
  • 英文关键词:the large-scale vegetation reducing sediment equation in the loess hilly region;;adaptability;;spatial scale
  • 中文刊名:ZRZX
  • 英文刊名:Journal of Natural Resources
  • 机构:遥感科学国家重点实验室北京师范大学地理学与遥感科学学院环境遥感与数字城市北京市重点实验室;贵州师范大学地理与环境科学学院;
  • 出版日期:2015-09-15
  • 出版单位:自然资源学报
  • 年:2015
  • 期:v.30
  • 基金:国家“十二五”科技支撑计划课题(2012BAB02B00);; 水利部公益项目(201101037);; 中央高校基本科研业务费专项
  • 语种:中文;
  • 页:ZRZX201509008
  • 页数:12
  • CN:09
  • ISSN:11-1912/N
  • 分类号:89-100
摘要
黄土丘陵沟壑区大空间尺度植被减沙方程是分析黄土高原植被变化产沙效应的有效工具,其在不同空间尺度的适应性对于黄河水沙情势变化研究十分重要。运用数值试验方法,研究黄土丘陵沟壑区大空间尺度林草植被减沙方程在小流域、子流域和栅格等3种空间尺度的适应性。结果显示,黄土丘陵沟壑区大空间尺度林草植被减沙方程在各空间尺度的总体估算偏差(D)由小到大排序为小流域(D=52.26%)<子流域(D=60.07%)<栅格(D=92.17%),纳什效率系数(NSE)由大到小排序为小流域(0.21)>子流域(-0.31)>栅格(-0.80)。可见,黄土丘陵沟壑区大空间尺度植被减沙方程在约500 km2以上的流域单元较为适用,在500 km2以下的子流域和栅格单元不适用。该研究成果可为黄土丘陵沟壑区大空间尺度林草植被减沙方程的推广应用提供参考。
        The large-scale vegetation reducing sediment equation in the loess hilly region(LVRSE) is one of the efficient tools for analyzing the effect of vegetation change on sediment yield in the Loess Plateau, and its adaptability at different spatial scales is very important to study the water and sediment changes of Yellow River. This research uses a numericalexperimental method to study the adaptability of LVRSE at small basin, sub-basin and grid scales. The result shows that the overall estimation bias(D) of LVRSE at different spatial scales ranks in the following order: small basin(D=52.26%), sub-basin(D=60.07%), grid(D=92.17%); the Nash-Sutcliffe model efficiency coefficient(NSE) of the LVRSE at different spatial scales ranks in the following order: small basin(NSE =0.21), sub-basin(NSE=-0.31),grid(NSE=-0.80). This result indicates that the LVRSE is more applicable to small basins of more than about 500 km2, and not applicable to the sub-basins and grids of less than 500 km2.These findings can provide reference for the popularization and application of the LVRSE.
引文
[1]卢金发,黄秀华.黄河中游地区流域产沙中的地貌临界现象[J].山地学报,2004,22(2):147-153.[LU Jin-fa,HUANG Xiu-hua.Thresholds in variation of sediment yield in the middle Yellow River Basin.Journal of Mountain Science,2004,22(2):147-153.]
    [2]冉大川,吴永红,李雪梅,等.河龙区间近期人类活动减水减沙贡献率分析[J].人民黄河,2012,34(2):84-86.[RAN Da-chuan,WU Yong-hong,LI Xue-mei,et al.Analysis on contribution rate of water and sediment reduction by human activities at Hekouzhen-Longmen section in last years.Yellow River,2012,34(2):84-86.]
    [3]刘晓燕,杨胜天,金双彦,等.黄土丘陵沟壑区大空间尺度林草植被减沙计算方法研究[J].水利学报,2014,45(2):135-141.[LIU Xiao-yan,YANG Sheng-tian,JIN Shuang-yan,et al.The method to evaluate the sediment reduction from forest and grass land over large area in the loess hilly area.Journal of Hydraulic Engineering,2014,45(2):135-141.]
    [4]Slattery M C,Burt T P.Particle size characteristics of suspended sediment in hillslope runoff and stream flow[J].Earth Surface Processes and Landforms,1997,22(8):705-719.
    [5]Takken I,Beuselinck L,Nachtergaele J,et al.Spatial evaluation of a physically-based distributed erosion model(LISEM)[J].Catena,1999,37(3/4):431-447.
    [6]Hoffman O,Yizhaq H,Boeken B R.Small-scale effects of annual and woody vegetation on sediment displacement under field conditions[J].Catena,2013,109:157-163.
    [7]Chen H,Cai Q G.Impact of hillslope vegetation restoration on gully erosion induced sediment yield[J].Science in China Series D:Earth Sciences,2006,49(2):176-192.
    [8]Bowman K P,Sacks J,Chang Y F.Design and analysis of numerical experiments[J].Journal of the Atmospheric Sciences,1993,50(9):1267-1278.
    [9]Church M,Lynch R O.Utilizing design of experiments,Monte Carlo simulations and partial least squares in snapback elimination[J].Quality and Reliability Engineering International,1998,14(4):227-235.
    [10]Spuzic S,Zec M,Abhary K,et al.Fractional design of experiments applied to a wear simulation[J].Wear,1997,212(1):131-139.
    [11]Bacoura C,Jacquemouda S,Tourbierb Y,et al.Design and analysis of numerical experiments to compare four canopy reflectance models[J].Remote Sensing of Environment,2002,79:72-83.
    [12]Defina A.Numerical experiments on bar growth[J].Water Resources Research,2003,39(4):1092,doi:10.1029/2002WR001455.
    [13]Molina1 A,Govers1 G,Putte1 A V,et al.Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration:field experiments and numerical modeling[J].Hydrology and Earth System Sciences,2009,13(10):1823-1836.
    [14]Gusman A R,Tanioka Y,Takahashi T.Numerical experiment and a case study of sediment transport simulation of the 2004 Indian Ocean tsunami in Lhok Nga,Banda Aceh,Indonesia[J].Earth Planets Space,2012,64:817-827.
    [15]刘昌明,杨胜天,温志群,等.分布式生态水文模型Eco HAT系统开发及应用[J].中国科学E辑:技术科学,2009,39(6):1112-1121.[LIU Chang-ming,YANG Sheng-tian,WHEN Zhi-qun,et al.Development and application of the distributed eco-hydrological model Eco HAT.Science China Technological Sciences,2009,39(6):1112-1121.]
    [16]Mou J.Recent studies of the role of soil conservation in reducing erosion and sediment yield in the Loess Plateau area of the Yellow River basin[J].International Association of Scientific Hydrology(IAHS Publications-Series of Proceedings and Reports),1996,236:541-548.
    [17]刘昌明,王中根,郑红星,等.HIMS系统及其定制模型的开发与应用[J].中国科学E辑:技术科学,2008,38(3):350-360.[LIU Chang-ming,WANG Zhong-gen,ZHENG Hong-xing,et al.HIMS system and its development and application of customization model.Science China Technological Sciences,2008,38(3):350-360.]
    [18]刘昌明,洪宝鑫,曾明煊,等.黄土高原暴雨径流预报关系初步实验研究[J].科学通报,1965,2(2):158-161.[LIU Chang-ming,HONG Bao-xin,ZENG Ming-xuan,et al.Experimental study on the relationship between storm and runoff in the Loess Plateau of China.Chinese Science Bulletin,1965,2(2):158-161.]
    [19]Neitsch S L,Arnold J G,Kiniry J R,et al.Soil and Water Assessment Tool.Theoretical Documentation Version[R].Texas Water Resources Institute Technical Report No.406,Texas A&M University System,College Station,Texas 77843-2118,2009.
    [20]Williams J R.Chapter 25:The EPIC model[C]//Singh V P.Computer Models of Watershed Hydrology.Water Resources Publications,Highlands Ranch,CO,1995:909-1000.
    [21]Wischmeier W H,Smith D D.Predicting rainfall-erosion losses from cropland east of the Rocky Mountains[C]//U.S.Department of Agriculture.Agricultural Handbook 282.USGPO,Washington D C,1965.
    [22]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.[CAI Chong-fa,DING Shu-wen,SHI Zhi-hua,et al.Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed.Journal of Soil and Water Conservation,2000,14(2):19-24.]
    [23]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1-20.[WANG Wan-zhong,JIAO Ju-ying.Quantitative evaluation on factors influencing soil erosion in China.Bulletin of Soil and Water Conservation,1996,16(5):1-20.]
    [24]Liu B Y,Nearing M A,Shi P J,et al.Slope length effects on soil loss for steep slopes[J].Soil Science Society of America Journal,2000,64:1759-1763.
    [25]Mc Cool D K,Brown L C,Foster G R,et al.Revised slope steepness factor for the Universal Soil Loss Equation[J].Transactions of the ASAE,1987,30(5):1387-1396.
    [26]Liu B Y,Nearing M A,Risse L M.Slope gradient effects on soil loss for steep slopes[J].American Society of Agricultural Engineers,1994,37(6):1835-1840.
    [27]Fu B J,Liu Y,LüY H,et al.Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China[J].Ecological Complexity,2011,8:284-293.
    [28]张建香,张勃,张华,等.黄土高原的景观格局变化与水土流失研究——以黄土高原马莲河流域为例[J].自然资源学报,2011,26(9):1513-1525.[ZHANG Jian-xiang,ZHANG Bo,ZHANG Hua,et al.Landscape pattern change and soil erosion research—Take Malian River basin in Loess Plateau as an example.Journal of Natural Resources,2011,26(9):1513-1525.]
    [29]王万忠,焦菊英,郝小品,等.中国降雨侵蚀力R值的计算与分布(Ⅰ)[J].水土保持学报,1995,9(4):5-18.[WANG Wan-zhong,JIAO Ju-ying,HAO Xiao-pin,et al.Study on rainfall erosivity in China(Ⅰ).Journal of Soil and Water Conservation,1995,9(4):5-18.]
    [30]刘万铨.黄河河龙区间黄土丘陵沟壑区土壤侵蚀模数与小流域泥沙来源研究[J].中国水土保持,1996(1):8-11.[LIU Wan-quan.Study on soil erosion modulus in gullied and rolling loess region and on sediment source in small watersheds in the reaches from Hekouzhen to Longmen of the Yellow River.Soil and Water Conservation in China,1996(1):8-11.]
    [31]Moriasi D N,Arnold J G,Liew M W V,et al.Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J].Transaction of the ASABE,2007,50(3):885-900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700