基于时间解析PIV的串列水力转轮尾流特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of wake flow characteristics for tandem hydraulic rotors using time-resolved PIV
  • 作者:季言广 ; 康灿 ; 张永超
  • 英文作者:Ji Yanguang;Kang Can;Zhang Yongchao;School of Energy and Power Engineering,Jiangsu University;
  • 关键词:串列Bach转轮 ; 尾流特性 ; 时间解析PIV ; 来流速度 ; 转轮安放角 ; 本征正交分解(POD)
  • 英文关键词:tandem Bach rotors;;wake characteristics;;time-resolved PIV;;upstream flow velocity;;rotor setting angle;;proper orthogonal decomposition(POD)
  • 中文刊名:LTLC
  • 英文刊名:Journal of Experiments in Fluid Mechanics
  • 机构:江苏大学能源与动力工程学院;
  • 出版日期:2019-06-15
  • 出版单位:实验流体力学
  • 年:2019
  • 期:v.33;No.149
  • 基金:江苏省六大人才高峰(A类)项目(ZBZZ-18)
  • 语种:中文;
  • 页:LTLC201903012
  • 页数:9
  • CN:03
  • ISSN:11-5266/V
  • 分类号:99-107
摘要
为研究串列水力转轮组合的下游转轮对上游转轮尾流的影响,采用时间解析PIV系统对2个垂直轴Bach水力转轮之间的流动进行测量。在不同来流速度条件下,研究下游转轮的安放角对上游水力转轮尾流的影响,对比分析受到水力转轮边界影响的尾流特征。研究结果表明:来流速度增大时,速度恢复区向上游转轮延伸,当下游转轮安放角小于108°时,该区域的速度随安放角增大而减小;当下游转轮安放角大于108°时,速度变化趋势相反。尾流中的旋涡涡心位置随安放角不同上下偏移,在部分安放角下,旋涡被拉伸变得扁平,流线也因此呈现出与无下游转轮时不同的非水平偏转状态;高能涡量区域在部分安放角和来流速度增大时,逐渐向下游和尾流中心发展,流场中离散的小尺度涡不断增加;尾流中的大尺度涡结构包含于前3阶的POD模态中,而高阶POD模态主要表征小尺度的流动结构。
        To study the influence of the downstream rotor on the wake of the upstream rotor,the time-resolved particle image velocimetry(TR-PIV)was used to measure the flow between two hydraulic Bach rotors.For different flow velocities,the influence of the setting angle of the downstream rotor on the upstream rotor wake was considered,and wake characteristics associated with various kinds of rotor boundaries were compared and analyzed.The results indicate that as the upstream velocity increases,the velocity recovery zone extends towards the upstream rotor.As the setting angle of the downstream rotor is smaller than 108°,velocity decreases as the setting angle increases.Such a tendency is overturned as the setting angle exceeds 108°.The positions of the vortex cores in the wake are shifted up and down with the variation in the setting angle,and the vortices are stretched and flattened at certain setting angles.Meanwhile,streamlines are deflected with respect to the main flow,which is significantly different from the situation without the downstream rotor.At some setting angles,with the increase of the upstream flow velocity,high-vorticity regions gradually develop in the streamwise direction and towards the wake center.Meanwhile,the number of sparsely distributed small-scale vortices increases continuously.Large-scale vortex structures in the wake are involved in the first three orders of proper orthogonal decomposition(POD)modes,while the high-order POD modes are featured by small-scale flowstructures.
引文
[1]王蔚峰,康灿,杨敏官.新型垂直轴螺旋型风力叶轮的研究[J].太阳能学报,2013,34(8):1421-1426.Wang W F,Kang C,Yang M G.Research of a novel spiral vertical-axis wind turbine rotor[J].Acta Energiae Solaris Sinica,2013,34(8):1421-1426.
    [2]Kacprzak K,Liskiewicz G,Sobczak K.Numerical investigation of conventional and modified Savonius wind turbines[J].Renewable Energy,2013,60(4):578-585.
    [3]Jaohindy P,Ennamiri H,Garde F.Numerical investigation of airflow through a Savonius rotor[J].Wind Energy,2014,17(6):853-868.
    [4]Nasef M H,El-Askary W A,AbdEl-Hamid A A,et al.Evaluation of savonius rotor performance:static and dynamic studies[J].Journal of Wind Engineering and Industrial Aerodynamics,2013,123(Part A):1-11.
    [5]Zhang B S,Song B W,Mao Z Y,et al.A novel parametric modeling method and optimal design for Savonius wind turbines[J].Energies,2017,10(3):1-20.
    [6]Kang C,Yang X,Wang Y L.Turbulent flow characteristics and dynamics response of a vertical-axis spiral rotor[J].Energies,2013,6(6):2741-2758.
    [7]Kumar A,Saini R P.Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades[J].Renewable Energy,2017,113:461-478.
    [8]Fujisawa N,Gotoh F.Visualization study of the flow in and around aSavonius rotor[J].Experiments in Fluids,1992,12(6):407-412.
    [9]Torresi M,de Benedittis F A,Fortunato B,et al.Performance and flow field evaluation of a Savonius rotor tested in a wind tunnel[J].Energy Procedia,2014,45:207-216.
    [10]Sarma N K,Biswas A,Misra R D.Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power[J].Energy Conversion and Management,2014,83:88-98.
    [11]Gao X X,Yang H X,Lu L.Optimization of wind turbine layout position in a wind farm using a newly-developed twodimensional wake model[J].Applied Energy,2016,174:192-200.
    [12]Park J,Law K H.Layout optimization for maximizing wind farm power production using sequential convex programming[J].Applied Energy,2015,151:320-334.
    [13]Zhang B S,Song B W,Mao Z Y,et al.A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines[J].Energy,2017,121:341-335.
    [14]Zuo W,Wang X D,Kang S.Numerical simulations on the wake effect of H-type vertical axis wind turbines[J].Energy,2016,106:691-700.
    [15]Lam H F,Peng H Y.Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations[J].Renewable Energy,2016,90:386-398.
    [16]Shaheen M,El-Sayed M,Abdallah S.Numerical study of twobucket Savonius wind turbine cluster[J].Journal of Wind Engineering and Industrial Aerodynamics,2015,137:78-89.
    [17]Shigetomi A,Murai Y,Tasaka Y,et al.Interactive flow field around two Savonius turbines[J].Renewable Energy,2011,36(2):536-545.
    [18]孙科,李岩,王凯,等.串列竖轴水轮机尾流场影响CFD模拟分析[J].哈尔滨工业大学学报,2018,50(5):185-191.Sun K,Li Y,Wang K,et al.CFD simulation analysis on the wake effect of tandem vertical axis tidal turbines[J].Journal of Harbin Institute of Technology,2018,50(5):185-191.
    [19]Ahmadi-Baloutaki M,Carriveau R,Ting D S-K,et al.A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations[J].Renewable Energy,2016,96(Part A):904-913.
    [20]杨瑞,张志勇,王强,等.串列风力机三维尾流场的实验研究[J].兰州理工大学学报,2017,43(5):60-64.Yang R,Zhang Z Y,Wang Q,et al.Experimental study of three-dimensional wake of tandem windturbines[J].Journal of Lanzhou University of Technology,2017,43(5):60-64.
    [21]郭峰山,贾明,林伟豪,等.竖轴潮流能水轮机群数值模拟研究[J].太阳能学报,2014,35(9):1810-1815.Guo F S,Jia M,Lin W H,et al.Numerical investigation of vertical tidal turbine arrays[J].Acta Energiae Solaris Sinica,2014,35(9):1810-1815.
    [22]王勇,郝南松,耿子海,等.基于时间解析PIV的圆柱绕流尾迹特性研究[J].实验流体力学,2018,32(1):64-70.Wang Y,Hao N S,Geng Z H,et al.Measurements of circular cylinder’s wake using time-resolved PIV[J].Journal of Experiments in Fluid Mechanics,2018,32(1):64-70.
    [23]Zhou T,Rempfer D.Numerical study of detailed flow field and performance of Savonius wind turbines[J].Renewable Energy,2013,51(2):373-381.
    [24]Hassanzadeh A R,Yaakob O B,Ahmed Y M,et al.Numerical simulation for unsteady flow over marine current turbine rotors[J].Wind and Structures,2016,23(4):301-311.
    [25]谢龙,靳思宇,王玉璋,等.阀体后90°圆形弯管内部流场PIV测量及POD分析[J].实验流体力学,2012,26(3):21-25,31.Xie L,Jin S Y,Wang Y Z,et al.PIV measurement and PODanalysis of inner flow flied in 90°bending duct of circular-section with fore-end valve[J].Journal of Experiments in Fluid Mechanics,2012,26(3):21-25,31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700