工程陶瓷材料的声透射特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transmission Coefficient of Wave in the Engineering Ceramic Materials
  • 作者:王兴国 ; 吴文林 ; 陈正林
  • 英文作者:WANG Xing-guo;WU Wen-lin;CHEN Zheng-lin;School of Mechanical and Electronic Engineering,Jingdezhen Ceramic Institute;Department of Mechanical Engineering,Nanchang Career Academy;
  • 关键词:工程陶瓷 ; 透射系数 ; 波动方程 ; 频厚积
  • 英文关键词:engineering ceramic;;transmission coefficient;;wave equation;;frequency-thickness
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:景德镇陶瓷大学机械电子工程学院;南昌职业学院工程系;
  • 出版日期:2017-12-15
  • 出版单位:硅酸盐通报
  • 年:2017
  • 期:v.36;No.255
  • 基金:国家自然科学基金(51305184,51565020);; 江西省教育厅科技项目(GJJ161485)
  • 语种:中文;
  • 页:GSYT201712009
  • 页数:4
  • CN:12
  • ISSN:11-5440/TQ
  • 分类号:65-68
摘要
针对工程陶瓷材料对声波的传播过程中声透射系数问题,从波动方程入手,利用传递矩阵法及声波气-固边界条件建立了声波在工程陶瓷材料的声透射系数特性数学模型,研究了垂直入射条件下不同频率声波在工程陶瓷材料中的声透射系数规律。仿真结果表明,当工程陶瓷材料的厚度为半波长整数倍时,此时声透射系数最大;当声波的频厚积是陶瓷厚度与其声速乘积一半的整数倍时,此时声透射系数最大。为工程陶瓷材料的隔声性能分析及声学检测提供了一定的理论基础。
        For the problem of the acoustic transmission coefficient of wave in engineering ceramic materials,the mathematical model of the acoustic transmission coefficient is built according to the wave equation,transfer matrices and gas-solid boundary conditions. The rule of acoustic transmission coefficient is researched under the condition that the different frequency wave vertically incidence in the ceramic material. Simulation results show the acoustic transmission coefficient is the maximum when thickness of ceramic material is an integer time of half wavelength or the frequency-thickness is integer time of half of product of acoustic velocity of ceramics and its thickness. It provides the theoretical base for sound insulation performance analysis and acoustic detection of the ceramic.
引文
[1]曾令可,胡动力,税安泽,等.多孔陶瓷制备新工艺及其进展[J].中国陶瓷,2008,44(7):7-11.
    [2]吴南星,陈正林,廖达海.基于lamb波在氮化硅陶瓷叶片及其作摩擦材料镀层传播特性的研究[J].陶瓷学报,2015,36(1):1-3.
    [3]李瑞锋.陶瓷空心球多孔材料吸声结构设计与声学机理研究[D].哈尔滨:哈尔滨工业大学,2015.
    [4]唐修检,张保国,田欣利,等.基于灰色-尖点突变理论的氧化铝陶瓷边缘碎裂损伤规律与机理研究[J].人工晶体学报,2014,43(4):87-92.
    [5]Paun F,Gasser S,Leylekian L.Design of materials for noise reduction in aircraft engines[J].Aerospace Science and Technology,2003,7(1):63-72.
    [6]Umnova O,Attenborough K,Shin H,et al.Response of multiple rigid porous layers to high levels of continuous acoustic excitation[J].J.Acoust.Soc.Am Am.,2004,116(2):703-712.
    [7]吕玉恒.噪声控制与建筑声学设备和材料选用手册[M].北京:化学工业出版社,2011:264-265.
    [8]Limardo J G,Allen C S.Analysis of noise exposure measurements acquired on board the international space station[C].41th International Conference on Environmental Systems,2011.
    [9]井强山,唐旖天,田永尚,等.低品位非金属矿制备多孔陶瓷及其吸音性能研究[J].人工晶体学报,2017,46(10):177-180.
    [10]陈继浩.隔声屏障结构声学模拟、设计与性能优化应用研究[D].北京:中国建筑材料科学研究总院,2009.
    [11]陈正林,肖任贤,王兴国,等.氮化硅陶瓷的空气耦合超声纵波传播特性研究[J].陶瓷学报,2015,36(4):405-409.
    [12]Caillet J,Marrot F,Unia Y,et al.Comprehensive approach for noise reduction in helicopter cabins[J].Aerospace Science and Technology,2012,23(1):17-25.
    [13]Zwikker C,Kosten C W.Sound absorbing materials[M].Amsterdam:Elsevier,1949.
    [14]张海澜.理论声学[M].北京:高等教育出版社,2007:198-210.
    [15]刘磊,杨扬,潘永东,等.空气耦合层状复合材料的声传播研究[J].固体力学学报,2014,35(1):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700