基于空气耦合超声波的非金属陶瓷材料检测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Testing for Non-metallic Ceramic Materials Based on Air-coupling Ultrasonic Wave
  • 作者:谢济励 ; 高俊国
  • 英文作者:XIE Ji-li;GAO Jun-guo;Key Laboratory of Engineering Dielectrics and Its Application,Ministry of Education,Harbin University of Science and Technology;
  • 关键词:非金属陶瓷材料 ; 空气耦合超声波 ; 有限元模型 ; 频散曲线
  • 英文关键词:non-metallic ceramic material;;air-coupled ultrasonic wave;;finite element model;;dispersion curve
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:哈尔滨理工大学工程电介质及其应用教育部重点实验室;
  • 出版日期:2018-06-15
  • 出版单位:硅酸盐通报
  • 年:2018
  • 期:v.37;No.261
  • 基金:国家自然科学基金(51577045);; 哈尔滨理工大学大学生创新创业训练项目(201710214103)
  • 语种:中文;
  • 页:GSYT201806033
  • 页数:6
  • CN:06
  • ISSN:11-5440/TQ
  • 分类号:182-187
摘要
针对非金属陶瓷材料的空气耦合超声波检测问题,建立空气耦合超声波经空气入射非金属陶瓷材料的数学模型及非金属陶瓷材料的空气耦合超声波检测有限元模型,通过matlab软件和ANSYS有限元软件联合仿真得到了非金属陶瓷材料的空气耦合超声波检测的频散曲线和各节点的接收信号,研究了空气耦合超声波在非金属陶瓷材料中的传播特性。结果表明,当频厚积小于2 MHz·mm,空气耦合超声波在非金属陶瓷材料氮化硅材料中存在A_0,S_0,SH_0三种模态;当频厚积大于2 MHz·mm时,材料中存在较多的模态。随着声波传播距离越远,所接收到的A_0模态和S_0模态的信号幅值越小,且A_0模态较S_0模态幅值大,因此宜激发A_0模态的空气耦合超声波检测和评价非金属陶瓷材料。
        Aiming at the problem of air-coupling ultrasonic testing for non-metallic ceramic materials,the mathematic model and the finite element model of air-coupled ultrasonic detection of non-metallic materials was established. Air-coupled ultrasonic propagation dispersion curve and received signals obtained from some node was simulated by the method of Matlab software and ANSYS finite element software,and the propagation characteristics of air-coupled ultrasonic wave in non-metallic ceramic materials were studied. The results show that wave of A_0,S_0 and SH_0 modes in the S_3N_4 ceramic material as the frequency is less than 2 MHz·mm. When the frequency is larger than 2 MHz·mm,the kinds of wave model is more in the medium. As the distance of wave propagation increase,the received signal amplitude of the A_0 modal and the S_0 modal is smaller,and the amplitude of A_0 modal is larger than amplitude of the S_0 modal,so it should stimulate the A_0 modal of air coupled ultrasonic for testing and evaluating non-metallic ceramic materials.
引文
[1]Singh N,Singh K,Pandey A,et al.Improved electrical transport properties in high quality nanocrystalline silicon carbide(nc-sic)thin films for microelectronic applications[J].Materials Letters,2016,164:28-31.
    [2]王腾飞,郑彧,庄新江,等.氮化硅陶瓷粉料造粒的研究进展[J].硅酸盐通报,2017,36(2):515-518.
    [3]王长利,周刚,马坤,等.爆炸成型弹丸对陶瓷材料的侵彻实验研究[J].兵器材料科学与工程,2017,40(3):94-98.
    [4]吴国荣,高超,王生.电镀金刚石钻头加工碳化硅陶瓷的试验研究[J].兵器材料科学与工程,2017,40(1):46-50.
    [5]翟建广,邹家生.Si3N4陶瓷与金属的连接技术[J].华东船舶工业学院学报,2004,18(2):65-70.
    [6]李红艳,赵丽萍,蔡传锦.超声波检测非金属材料的研究构想[J].全国首届青年复合材料学术交流会论文集,2007.
    [7]赵治广.超声波检测非金属材料的研究与开发[J].实验技术与管理,2006,23(10):30-32.
    [8]王晓明,陈军芳,倪志盛.微波在非金属材料无损检测中的应用[J].微波学报,2004,20(2):70-76.
    [9]Kenneth R C.Image Process[M].北京:电子工业出版社,1998:12-21.
    [10]Satyanarayan L,Haberman M R,Berthelot Y H.Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials[J].IEEE transactions on ultrasonics,ferroelectrics,and frequency control,2010,57(10):329-340.
    [11]陈正林.固体层状介质中的超声波传播特性研究[D].景德镇:景德镇陶瓷大学,2016.
    [12]周正干,魏东.空气耦合式超声波无损检测技术的发展[J].机械工程学报,2008,44(6):10-14.
    [13]张斌,何梅洪,杨涛.复合材料空气耦合超声检测技术[J].玻璃钢/复合材料,2015(12):94-98.
    [14]王占吉,刘玲,晏冬秀,等.纤维层内树脂流动的空气耦合超声无损检测[J].复合材料学报,2013,30(2):24-30.
    [15]Kazys R,Demcenko A,Zukauskas E,et al.Air-coupled ultrasonic investigation of multi-layered composite materials[J].Ultrasonics,2006(44):819-822.
    [16]李志浩.薄板缺陷的Lamb波检测与信号处理[D].大连:大连理工大学,2011.
    [17]魏运飞,卢超,张在东.薄板声-超声检测时兰姆波传播模式的有限元模拟[J].无损检测,2009(7):520-524.
    [18]董彦磊.Lamb波在板中缺陷检测的有限元模拟和实验研究[D].成都:电子科技大学,2013.
    [19]陈正林,肖任贤,王兴国,等.氮化硅陶瓷的空气耦合超声纵波传播特性研究[J].陶瓷学报,2015,36(4):405-409.
    [20]江洋,罗林,王泽勇.粘接结构的空气耦合超声导波检测仿真信号研究[J].通信技术,2017,50(6):1188-1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700