高分辨率超声Lamb波频散曲线测量与板厚估计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-Resolution Ultrasonic Lamb Waves Dispersion Measurement and Plate Thickness Evaluation
  • 作者:许凯亮 ; 张正罡 ; 刘丹 ; 他得安 ; 胡波
  • 英文作者:Xu Kailiang;Zhang Zhenggang;Liu Dan;Ta Dean;Hu Bo;Laboratoire d′Imagerie Biomedicale(LIB),Sorbonne Universites,UPMC Univ Paris 06,CNRS,INSERM;Department of Electronic Engineering,Fudan University;Key Lab of Med Imag Computing and Computer Assisted Intervention(MICCAI) of Shanghai;
  • 关键词:超声Lamb波 ; 经典谱估计法 ; 频散曲线 ; 厚度估计 ; 无损检测
  • 英文关键词:ultrasonic Lamb waves;;traditional spectrum estimation methods;;dispersion curves;;thickness estimation;;non-destructive evaluation
  • 中文刊名:SJCJ
  • 英文刊名:Journal of Data Acquisition and Processing
  • 机构:巴黎第六大学法国国家科学研究院国家卫生与医学研究院生物医学成像实验室(LIB);复旦大学电子工程系;上海市医学图像处理与计算机辅助手术重点实验室;
  • 出版日期:2017-03-15
  • 出版单位:数据采集与处理
  • 年:2017
  • 期:v.32;No.142
  • 基金:国家自然科学基金(11304043,11327405,11525416)资助项目
  • 语种:中文;
  • 页:SJCJ201702008
  • 页数:7
  • CN:02
  • ISSN:32-1367/TN
  • 分类号:86-92
摘要
超声Lamb波在工业无损检测与评价中具有广阔的应用前景。但受制于超声导波多模式频散与混叠的影响,如何实现高分辨率超声导波的模式分离与频散曲线提取,进而定量分析材料的健康状况一直是研究的热点与难点。本文旨在将现代信号处理中广泛采用的谱估计技术应用于超声Lamb波阵列信号分析,并通过提取频散曲线定量测量板厚度。以经典参数谱估计法中的Yule-Walker法与Burg法为例,实验测量和分析了3mm,4mm和5mm厚铝板中的宽带多模式Lamb波信号,准确地提取了铝板中的宽带Lamb波频散曲线,并比较了两种经典谱估计方法与二维傅氏变换法的性能,最终实现了铝板厚度估计。
        As one of the most promising technologies,ultrasonic Lamb waves have been widely analyzed in the non-destructive evaluation.However,due to the guided dispersion and mode overlap,mode identification and dispersion determination are still challenging,thereby attacting considerable attentions.Here,we use two traditional spectrum estimation methods,i.e.,the Yule-Walker method and the Burg method to analyze the array-transducer signals for high-resolution ultrasonic Lamb waves dispersion measurement.An inverse method was also designed to estimate the aluminum plate thickness from the extracted wideband dispersion curves.Experiments on three aluminate plates with different thicknesses(3mm,4mm and 5mm)demonstrated that the spectrum estimation methods were helpful for the ultrasonic Lamb waves based non-destructive evaluation.
引文
[1]Su Z Q,Ye L.Identification of damage using Lamb waves:From fundamentals to applications[M].Berlin:Springer,2009.
    [2]Hong M,Wang Q,Su Z Q,et al.In situ health monitoring for bogie systems of CRH380train on Beijing-Shanghai highspeed railway[J].Mechanical Systems and Signal Processing,2014,45(2):378-395.
    [3]Li W B,Cho Y,Achenbach J D.Detection of thermal fatigue in composites by second harmonic Lamb waves[J].Smart Materials and Structures,2012,21(8):085019.
    [4]Foiret J,Minonzio J G,Chappard C,et al.Combined estimation of thickness and velocities using ultrasound guided waves:A pioneering study on in vitro cortical bone samples[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2014,61(9):1478-1488.
    [5]Xu K L,Liu D,Ta D A,et al.Quantification of guided mode propagation in fractured long bones[J].Ultrasonics,2014,54(5):1210-1218.
    [6]Xu K L,Ta D A,He R X,et al.Axial transmission method for long bone fracture evaluation by ultrasonic guided waves:Simulation,phantom and in vitro experiments[J].Ultrasound in Medicine and Biology,2014,40(4):817-827.
    [7]Urban M,Pislaru C,Nenadic I,et al.Measurement of viscoelastic properties of in vivo swine myocardium using Lamb wave dispersion ultrasound vibrometry(LDUV)[J].IEEE Transactions on Medical Imaging,2012,32(2):247-261.
    [8]Deng M X.Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate[J].Journal of Applied Physics,1999,85(6):3051-3058.
    [9]Zhang Z Z,Liu D,Deng M X,et al.Experimental observation of cumulative second-harmonic generation of Lamb waves propagating in long bones[J].Ultrasound in Medicine and Biology,2014,40(7):1660-1670.
    [10]Xu K L,Ta D A,Wang W Q,et al.Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2010,57(11):2480-2490.
    [11]Song X J,Ta D A,Wang W Q.Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm[J].Ultrasound in Medicine and Biology,2011,37(10):1704-1713.
    [12]Xu K L,Ta D A,Moilanen P,et al.Mode separation of Lamb waves based on dispersion compensation method[J].Journal of the Acoustical Society of America,2012,131(4):2714-2722.
    [13]Zhao Ming,Zeng Liang,Lin Jing,et al.Mode identification and extraction of broadband ultrasonic guided waves[J].Measurement Science and Technology,2014,25(11):115005.
    [14]Ing R K,Fink M.Time-reversed Lamb waves[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1998,45(4):1032-1043.
    [15]刘洋,郭霞生,章东,等.基于时间反转的骨裂纹超声成像模拟研究[J].声学学报,2011,36(2):179-184.Liu Yang,Guo Xiasheng,Zhang Dong,et al.A simulation study of ultrasonic imaging of micro-crack in bone based on timereversed approach[J].Acta Acustica,2011,36(2):179-184.
    [16]Xu K L,Ta D A,Hu B.Wideband dispersion reversal of Lamb waves[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2014,61(6):997-1005.
    [17]Harley J B,Moura J M F.Sparse recovery of the multimodal and dispersive characteristics of Lamb waves[J].Journal of the Acoustical Society of America,2013,133(5):2732-2745.
    [18]Alleyne D,Cawley P.A two-dimensional Fourier transform method for the measurement of propagating multimode signals[J].Journal of the Acoustical Society of America,1991,89(3):1159-1168.
    [19]Minonzio J G,Talmant M and Laugier P.Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration[J].Journal of the Acoustical Society of America,2010,127:2913-2919.
    [20]Xu K L,Minonzio L G,Ta D A,et al.Sparse SVD method for high resolution extraction of the dispersion curves of ultrasonic guided waves[J].IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2016,63:1514-1524.
    [21]Xu K L,Ta D A,Cassereau D,et al.Multichannel processing for dispersion curves extraction of ultrasonic axial-transmission signals:Comparisons and case studies[J].Journal of the Acoustical Society of America,2016,140:1758-1770.
    [22]CastaniéF.Digital spectral analysis:Parametric,non-parametric and advanced methods[M].London:ISTE Ltd,2010.
    [23]Viktorov I A.Rayleigh and Lamb waves:Physical theory and applications[M].New York:Plenum Press,1967.
    [24]Harley J B,Moura J M.Data-driven matched field processing for Lamb wave structural health monitoring[J].Journal of the Acoustical Society of America,2014,135(3):1231-1244.
    [25]Ngo S,Minonzio J G,Legros M,et al.A capacitive micromachined ultrasonic transducer probe for assessment of cortical bone[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2014,61(4):710-723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700