啁啾脉冲频谱相位的测量方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement Method of Spectral Phase of Chirped Pulses
  • 作者:范伟 ; 刘东晓 ; 钱凤 ; 巫殷忠 ; 席涛 ; 税敏 ; 韩丹 ; 谷渝秋
  • 英文作者:Fan Wei;Liu Dongxiao;Qian Feng;Wu Yinzhong;Xi Tao;Shui Min;Han Dan;Gu Yuqiu;Science and Technology on Plasma Physics Laboratory,Research Center of Laser Fusion,China Academy of Engineering Physics;
  • 关键词:测量 ; 干涉条纹 ; 相位测量 ; 频谱干涉 ; 啁啾脉冲
  • 英文关键词:measurement;;interference fringe;;phase measurement;;spectral interference;;chirped pulse
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室;
  • 出版日期:2017-06-16 10:06
  • 出版单位:光学学报
  • 年:2017
  • 期:v.37;No.427
  • 基金:国家自然科学基金(11405159);; 中国工程物理研究院科学技术发展基金(2014A0102003)
  • 语种:中文;
  • 页:GXXB201710024
  • 页数:6
  • CN:10
  • ISSN:31-1252/O4
  • 分类号:185-190
摘要
啁啾脉冲频谱干涉仪(CPSI)是一种单发超快诊断仪器,其中采用大啁啾量的参考、探测脉冲并准确测量其频谱电场是仪器同时实现超高时间分辨和大量程测试的关键因素。基于变换极限飞秒脉冲和啁啾脉冲之间的频谱干涉,通过理论和数值计算研究提出了一种用于大啁啾量脉冲的频谱相位测量的线性光学测量方法,称之为非对称频谱干涉法。研究表明,当利用非对称频谱干涉法测量啁啾脉冲频谱干涉仪中的啁啾脉冲频谱相位时,时间延迟的平移误差和相对较小的飞秒脉冲啁啾会使测量结果产生一阶相位误差,并由此导致啁啾脉冲频谱干涉仪测量时域信号的结果产生时间上的平移,但是所测信号的相对时间演化过程不受其影响。
        Chirped pulse spectral interferometer(CPSI)is an ultrafast single-shot diagnostic instrument,the large chirped pulses reference,pulse detection and accurate measurement of its spectral of electric field are critical factors to realize ultra-high time-resolution and large range of testing simultaneously.Based on the spectral interference between transform limit femtosecond pulse and chirped pulse,a linear optical measurement method for spectral phase measurement of large chirp pulse is proposed by theoretical analysis and numerical calculation.It is called asymmetric spectral interference method.Investigations show that when employing the asymmetric spectral interference method to measure the spectral phase of chirped pulses in CPSI,translation error of the time delays and relative smaller chirp of femtosecond pulse will produce a first order phase error.Consequently,the time-domain signal measured by CPSI will generate a time translation,but the relative time evolution of the measured signal is not affected.
引文
[1]Matlis N H,Reed S,Bulanov S S,et al.Snapshots of laser wakefields[J].Nat Phys,2006,2(11):749-753.
    [2]Dong P,Reed S A,Yi S A,et al.Holographic visualization of laser wakefields[J].New J Phys,2010,12:045016.
    [3]Dong J,Peng Z T,Lu Z G,et al.Transient measurement of laser wakefield at the SILEX-I:Ti:sapphire laser[C].San Jose:Conference on Lasers and Electro-Optics,2012:JTh2A.21.
    [4]Chen J P,Li R X,Zeng Z N,et al.Simultaneous measurement of laser-induced shock wave and released particle velocities at Mbar pressure[J].J Appl Phys,2003,94(2):858-862.
    [5]Crowhurst J C,Armstrong M R,Knight K B,et al.Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold[J].Phys Rev Lett,2011,107(14):144302.
    [6]Ashitkov S I,Komapov P S,Agranat M B,et al.Measurements of strength of metals in a picosecond time range[J].J Phys:Conf Ser,2014,500:112006.
    [7]Wahlstrand J K,Cheng Y H,Milchberg H M.High field optical nonlinearity and the Kramers-Kronig relations[J].Phys Rev Lett,2012,109(11):113904.
    [8]Wahlstrand J K,Cheng Y H,Chen Y H,et al.Optical nonlinearity in Ar and N2 near the ionization threshold[J].Phys Rev Lett,2011,107(10):103901.
    [9]Zhou M L,Liu F,Li C,et al.Single-shot broad bandwidth terahertz pulse measurement[J].Plasma Sci&Technol,2012,14(1):20-23.
    [10]Churina I V,Cho B I,Bernstein A,et al.Single-shot optical conductivity measurement of dense aluminum plasmas[J].Phys Rev E,2009,80(1):015401.
    [11]Chen Z,Holst B,Kirkwood S E,et al.Evolution of ac conductivity in nonequilibrium warm dense gold[J].Phys Rev Lett,2013,110(13):135001.
    [12]Dong Jun.Research on laser wakefields measurement technology based on frequency domain holography[D].Mianyang:China Academy of Engineering Physics,2007:48-57.董军.基于频域全息法的激光尾场测量技术研究[D].绵阳:中国工程物理研究院,2007:48-57.
    [13]Chien C Y,La-Fontaine B,Desparois A,et al.Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air[J].Opt Lett,2000,25(8):578-580.
    [14]Benuzzi-Mounaix A,Koenig M,Boudenne J M,et al.Chirped pulse reectivity and frequency domain interferometry in laser driven shock experiments[J].Phys Rev E,1999,60(3):R2488-R2491.
    [15]Geindre J P,Audebert P,Rebibo S,etal.Single-shot spectral interferometry with chirped pulses[J].Opt Lett,2001,26(20):1612-1614.
    [16]Kim K Y,Alexeev I,Milchberg H M.Single-shot supercontinuum spectral interferometry[J].Appl Phys Lett,2002,81(22):4124-4126.
    [17]Dong Jun,Peng Hansheng,Wei Xiaofeng,et al.Analysis for phase shifts transformation of chirped pulse from frequency-domain to time-domain based on Fourier transform[J].Acta Phys Sin,2009,58(1):315-320.董军,彭翰生,魏晓峰,等.基于傅里叶变换模式的啁啾脉冲频域-时域相移转换的研究[J].物理学报,2009,58(1):315-320.
    [18]Sun F G,Jiang Z,Zhang X C.Analysis of terahertz pulse measurement with a chirped probe beam[J].Appl Phys Lett,1998,73(16):2233-2235.
    [19]Kim K Y,Yellampalle B,Rodriguez G,et al.Single-shot,interferometric,high-resolution,terahertz field diagnostic[J].Appl Phys Lett,2006,88(4):041123.
    [20]Whitley V H,McGrane S D,Eakins D E,et al.The elastic-plastic response of aluminum films to ultrafast lasergenerated shocks[J].J Appl Phys,2011,109(1):013505.
    [21]Chen Y H,Varma S,Alexeev I,et al.Measurement of transient nonlinear refractive index in gases using xenon supercontinuum single-shot spectral interferometry[J].Opt Express,2007,15(12):7458-7467.
    [22]Tokunaga E,Terasaki A,Kobayashi T.Induced phase modulation of chirped continuum pulses studied with a femtosecond frequency-domain interferometer[J].Opt Lett,1993,18(5):370-372.
    [23]Dou T H,Tautz R,Gu X,et al.Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave[J].Opt Express,2010,18(26):27900.
    [24]Wu H,Zhang F,Liu T,et al.Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser[J].Opt Express,2015,23(24):31582-31593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700