两种造纸废水的厌氧内循环反应器内颗粒污泥菌群及结构特性的对照分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Dominant Bacterial Community Structures in IC Reactors for Treating Two Different Papermaking Wastewaters from Wastepaper Recycling and Bagasse Pulping
  • 作者:易敏 ; 蒋亚蕾 ; 王双飞 ; 杨珍珍 ; 章哲韵 ; 王志伟
  • 英文作者:Yi Min;Jiang Ya-lei;Wang Shuang-fei;Yang Zhen-zhen;Zhang Zhe-yun;Wang Zhi-wei;Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control,Guangxi University;School of Environment,Guangxi University;
  • 关键词:造纸废水 ; 厌氧颗粒污泥 ; 高通量测序 ; 微生物群落
  • 英文关键词:microbial community;;high-throughput sequencing;;papermaking wastewater;;anaerobic granular sludge
  • 中文刊名:GDZZ
  • 英文刊名:Paper Science & Technology
  • 机构:广西大学广西清洁化制浆造纸与污染控制重点实验室;广西大学环境学院;
  • 出版日期:2017-06-15
  • 出版单位:造纸科学与技术
  • 年:2017
  • 期:v.36;No.215
  • 基金:国家自然科学基金(No.31660182);; 广西青年自然科学基金(No.2015GXNSFBA139042);; 广西清洁化制浆造纸与污染控制重点实验室基金项目(ZR201607)
  • 语种:中文;
  • 页:GDZZ201703018
  • 页数:7
  • CN:03
  • ISSN:44-1532/TS
  • 分类号:76-82
摘要
废纸制浆废水厌氧处理时会发生严重厌氧颗粒污泥钙化问题,而造纸厂蔗渣喷淋废水厌氧处理时则极少出现颗粒污泥钙化现象,值得我们进行深入研究。取正常运行条件下蔗渣喷淋废水厌氧处理颗粒污泥AS1和废纸废水厌氧处理的颗粒污泥AS2进行表面结构、元素组成及微生物结构分析,为揭示颗粒污泥钙化原因提供理论和数据支持。通过电感耦合等离子质谱仪(ICP-MS)分析污泥的重金属成分、利用红外光谱(FITR)分析污泥表面官能团种类、采用能谱仪(EDS)分析污泥表面的元素组成、并使用Illumina Hi Seq 2500对细菌V3和V4区进行高通量测序,分析了污泥微生物的多样性及菌群的相对丰度。结果表明,两个样品的重金属含量、表面元素分布、表面官能团分布均存在较大差别。AS1中的微生物主要由Bactericides(25.37%)、Proteobacteria(20.19%)、Hyd24-12(14.43%)、Chloroflexi(10.58%)和Firmicutes(8.91%)五个菌门组成,AS2中的微生物主要由Bacteroidetes(20.44%)、Chloroflexi(19.47%)、Proteobacteria(19.32%)、Firmicutes(6.15%)、Spirochaetae(4.81%)、Actinobacteria(4.39%)和Lentisphaerae(4.32%)七个菌门组成,而且细菌种类比较丰富,且细菌数量分布与其处理底物相适应。另外,在AS1和AS2中都检测到Methanobacterium和Methanosaeta两类产甲烷古菌,单独在AS2中检测到了第七产甲烷古菌目代表菌Methanomassiliicoccus。AS2中产甲烷菌的相对丰度较高,约占50%;而AS1仅占10%。
        Dominant bacterial community structures in the anaerobic granular sludge plays key roles during the treatment of papermaking wastewater in internal circulation anaerobic reactor(IC). Surface structure,element composition and microbial structure in anaerobic granular sludge samples from two different sources AS1(bagasse pulping wastewater) and AS2(wastepaper recycling wastewater) were studied. The results showed that there were significant differences between them. The microbes in AS1 were mainly composed of Bacteroidetes(25. 37%),Proteobacteria(20. 19%),Hyd24-12(14. 43%),Chloroflexi(10. 58%) and Firmicutes(8. 91%),in AS2 were mainly composed of Bacteroidetes(20. 44%),Chloroflexi(19. 47%),Proteobacteria(19. 32%),Firmicutes(6. 15%),Spirochaetae(4. 81%),Actinobacteria(4. 39%) and Lentisphaerae(4. 32%). In addition,both Methanobacterium and Methanosaeta were found as methanogenic archaea,but particularly finding the Methanomassiliicoccus in AS2,and the total relative abundance of methanogens in AS2 was higher than that in AS1,especially the Methanosaeta.
引文
[1]中国造纸协会.中国造纸工业2015年度报告[J].纸和造纸,2016(6):20-31.
    [2]Pokhrel D,Viraraghavan T.Treatment of pulp and paper mill wastewater-a review[J].Sci Total Environ,2004,333(1-3):37-58.
    [3]Batstone D J,Keller J,Blackall L L.The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass[J].Water Research,2004,38(6):1390-404.
    [4]Zhang T,Shao M F,Ye L.454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J].ISMEJ,2012,6(6):1137-47.
    [5]Ansorge W J.Next-generation DNA sequencing techniques[J].New Biotechnology,2009,25(4):195-203.
    [6]Xiong W,Sun Y,Zhang T,et al.Antibiotics,Antibiotic Resistance Genes,and Bacterial Community Composition in Fresh Water Aquaculture Environment in China[J].Microb Ecol,2015,70(2):425-32.
    [7]Mohamad Shahimin M F,Foght J M,Siddique T.Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds[J].Sci Total Environ,2016,553:250-7.
    [8]Moberly J,D'imperio S,Parker A,et al.Microbial community signature in Lake Coeur d’Alene:Association of environmental variables and toxic heavy metal phases[J].Applied Geochemistry,2016,66:174-183.
    [9]Lenz M,Hullebusch E D,Hommes G,et al.Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors[J].Water Research,2008,42(8-9):2184-94.
    [10]Tay J H,Liu Q S,Liu Y.Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J].Journal of Applied Microbiology,2001,91(1):168-75.
    [11]Peraza M A,Ayala-Fierro F,Barber D S,et al.Effects of micronutrients on metal toxicity[J].Environmental Health Perspectives,1998,106 Suppl 1(Suppl 1):203-16.
    [12]Duru 6,Ege D,Kamali A R.Graphene oxides for removal of heavy and precious metals from wastewater[J].Journal of Materials Science,2016,51(13):6097-6116.
    [13]张国威.Pb(Ⅱ)在活性污泥中的吸附特性及形态迁移规律研究[D].天津:南开大学,2014.
    [14]Liu G,Song H,Wu J.Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis[J].Waste Manag,2015,41:128-33.
    [15]De Oliveira Silva J,Filho G R,Da Silva Meireles C,et al.Thermal analysis and FTIR studies of sewage sludge produced in treatment plants.The case of sludge in the city of Uberlandia-MG,Brazil[J].Thermochimica Acta,2012,528:72-75.
    [16]Sun X F,Wang S G,Cheng W,et al.Enhancement of acidic dye biosorption capacity on poly(ethylenimine)grafted anaerobic granular sludge[J].J Hazard Mater,2011,189(1-2):27-33.
    [17]Francioso O,Rodriguez-Estrada M T,Montecchio D,et al.Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production[J].J Hazard Mater,2010,175(1-3):740-6.
    [18]Smidt E,Meissl K.The applicability of Fourier transform infrared(FT-IR)spectroscopy in waste management[J].Waste Manag,2007,27(2):268-76.
    [19]Ma X,Duan Y,Liu M.Effects of petrochemical sludge on the slurry-ability of coke water slurry[J].Experimental Thermal and Fluid Science,2013,48:238-244.
    [20]Wang Y,Sheng H F,He Y,et al.Comparison of the levels of bacterial diversity in freshwater,intertidal wetland,and marine sediments by using millions of illumina tags[J].Appl Environ Microbiol,2012,78(23):8264-71.
    [21]Boon N,Windt W,Verstraete W,et al.Evaluation of nested PCR-DGGE(denaturing gradient gel electrophoresis)with groupspecific 16S r RNA primers for the analysis of bacterial communities from different wastewater treatment plants[J].Fems Microbiology Ecology,2002,39(2):101-112.
    [22]Roesch L F,Fulthorpe R R,Riva A,et al.Pyrosequencing enumerates and contrasts soil microbial diversity[J].ISME J,2007,1(4):283-90.
    [23]温博婷.木质纤维素原料的酶解糖化及厌氧发酵转化机理研究[D].中国农业大学,2015.
    [24]Rosenkranz F,Cabrol L,Carballa M,et al.Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR[J].Water Research,2013,47(17):6739-49.
    [25]Zhang Y,Cui B,Xie T,et al.Gradient distribution patterns of rhizosphere bacteria associated with the coastal reclamation[J].Wetlands,2016,36(S1):69-80.
    [26]Narihiro T,Nobu M K,Kim N K,et al.The nexus of syntrophyassociated microbiota in anaerobic digestion revealed by long-term enrichment and community survey[J].Environ Microbiol,2015,17(5):1707-20.
    [27]Ishii S,Suzuki S,Norden-Krichmar T M,et al.A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer[J].Nat Commun,2013,4:1601.
    [28]Gray N D,Sherry A,Grant R J,et al.The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes[J].Environ Microbiol,2011,13(11):2957-75.
    [29]Inagaki F,Takai K,Nealson K H,et al.Sulfurovum lithotrophicum gen.nov.,sp.nov.,a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments[J].Int J Syst Evol Microbiol,2004,54(Pt 5):1477-82.
    [30]Dubinina G,Grabovich M,Leshcheva N,et al.Spirochaeta perfilievii sp.nov.,an oxygen-tolerant,sulfide-oxidizing,sulfur-and thiosulfate-reducing spirochaete isolated from a saline spring[J].Int J Syst Evol Microbiol,2011,61(Pt 1):110-7.
    [31]Shen P,Zhang J,Zhang J,et al.Changes in microbial community structure in two anaerobic systems to treat bagasse spraying wastewater with and without addition of molasses alcohol wastewater[J].Bioresource Technology,2013,131:333-40.
    [32]Luo L,Xu S,Selvam A,et al.Assistant role of bioelectrode on methanogenic reactor under ammonia stress[J].Bioresour Technol,2016,217:72-81.
    [33]Rotaru A-E,Shrestha P M,Liu F,et al.A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J].Energy Environ Sci,2014,7(1):408-415.
    [34]Lang K,Schuldes J,Klingl A,et al.Comparative genome analysis of“Candidatus Methanoplasma termitum”indicates a new mode of energy metabolism in the seventh order of methanogens[J].Applied and Environmental Microbiology,2014,81(4):1338-1352.
    [35]张坚超,徐镱钦,陆雅海.陆地生态系统甲烷产生和氧化过程的微生物机理[J].生态学报,2015,35(20):6592-6603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700