阻塞性颗粒阻尼器内部的颗粒莱顿弗罗斯特现象
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Granular Leidenfrost Effect in a Non-Obstructive Particle Damper
  • 作者:张凯 ; 陈天宁 ; 王小鹏
  • 英文作者:ZHANG Kai;CHEN Tianning;WANG Xiaopeng;School of Mechanical Engineering,Xi'an Jiaotong University;State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi'an Jiaotong University;
  • 关键词:颗粒阻尼器 ; 最优阻尼 ; 颗粒莱顿弗罗斯特效应 ; 能量耗散
  • 英文关键词:particle damper;;optimal damping;;granular Leidenfrost effect;;energy dissipation
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:西安交通大学机械工程学院;西安交通大学机械结构强度与振动国家重点实验室;
  • 出版日期:2016-05-17 19:31
  • 出版单位:西安交通大学学报
  • 年:2016
  • 期:v.50
  • 基金:中国空间技术研究院创新基金资助项目(J20141109)
  • 语种:中文;
  • 页:XAJT201608003
  • 页数:6
  • CN:08
  • ISSN:61-1069/T
  • 分类号:21-25+50
摘要
为了更好地揭示非阻塞性颗粒阻尼器(NOPD)的减振机理,基于振动颗粒物质的流变特性,研究了NOPD的阻尼效果和其内部阻尼颗粒运动形态之间的关系,通过实验确定了NOPD发挥最优阻尼效果时其内部颗粒的运动形态,使用离散元仿真分析了最优阻尼颗粒的耗散特性。研究表明:实验设计参数下的NOPD发挥最优阻尼效果时(激振强度Γ=3.3,f=21 Hz),其内部出现稳定的颗粒莱顿弗罗斯特现象;这种状态下的NOPD最优阻尼效果主要来自两方面,一方面是主系统的部分振动动能通过颗粒间或颗粒与容器壁间发生的碰撞和摩擦以热能的形式散发,是颗粒对主系统振动能量的直接耗散;另一方面是主系统的部分振动动能转化为浮动颗粒的势能以维持颗粒莱顿弗罗斯特效应的稳定,这可看作是颗粒对主系统振动能量的间接耗散。
        To reveal the optimal damping mechanism of non-obstructive particle dampers(NOPDs),the relationship between the damping performance of NOPDs and the motion mode of damping particles in NOPDs is deduced following the rheological behavior of vibrated granular particles.The motion mode of the damping particles giving the optimal damping effect is determined via cantilever system experiments,and the dissipation properties of the damping particles giving the optimal effect are analyzed numerically by the discrete element method(DEM).It is found that when the NOPD gives the optimal damping effect(Γ=3.3,f=21Hz),the steady granular Leidenfrost phenomenon occurs.In this circumstance,the optimal damping performance of the NOPD results mainly from two aspects,i.e.the direct energy dissipation caused by collisions and frictions between particle-particle and particle-wall,and the energy conversion from the input vibration energy to the potential energy of levitated granular particles,which can be regarded as indirect energy dissipation.
引文
[1]PANOSSIAN H V.Structural damping enhancement via non-obstructive particle damping technique[J].ASME Journal of Vibration and Acoustics,1992,114(1):101-105.
    [2]方江龙,王小鹏,陈天宁,等.动理论在预测非阻塞性颗粒阻尼能量耗散中的应用[J].西安交通大学学报,2014,49(4):12-17.FANG Jianglong,WANG Xiaopeng,CHEN Tianning,et al.Application of kinetic theory to quantitative analysis model of non-obstructive particle damping[J].Journal of Xi’an Jiaotong University,2014,49(4):12-17.
    [3]FRIEND R D,KINRA V K.Particle impact damping[J].Journal of Sound and Vibration,2000,233(1):93-118.
    [4]张超,陈天宁,王小鹏,等.颗粒阻尼线性离散元模型参数的选取方法[J].西安交通大学学报,2014,48(3):96-101.ZHANG Chao,CHEN Tianning,WANG Xiaopeng,et al.Parameter selection method for linear discrete element model of particle damper[J].Journal of Xi’an Jiaotong University,2014,48(3):96-101.
    [5]吴九汇.振动与噪声前沿理论及应用[M].西安:西安交通大学出版社,2014:3-8.
    [6]ZHANG Kai,CHEN Tianning,WANG Xiaopeng,et al.Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper[J].Journal of Sound and Vibration,2016,364:30-43.
    [7]SALUEA C,PSCHEL T,ESIPOV S E.Dissipative properties of vibrated granular materials[J].Physical Review:E,1999,59(4):4422-4425.
    [8]CLMENT E,DURAN J,RAJCHENBACH J.Experimental study of heaping in a two-dimensional“sand pile”[J].Physical Review Letters,1992,69(8):1189-1192.
    [9]AOKI K M,AKIYAMA T.Spontaneous wave pattern formation in vibrated granular materials[J].Physical Review Letters,1996,77(77):4166-4169.
    [10]HSIAU S S,WU M H,CHEN C H.Arching phenomena in a vibrated granular bed[J].Powder Technology,1998,99(2):185-193.
    [11]JIANG Z H,WANG Y Y,WU J.Subharmonic motion of granular particles under vertical vibrations[J].Europhysics Letters,2006,74(3):417-423.
    [12]EHRICHS E E,JAEGER H M,KARCZMAR G S,et al.Granular convection observed by magnetic resonance imaging.[J].Science,1995,267(5204):1632-1634.
    [13]MEERSON B,PSCHEL T,BROMBERG Y.Closepacked floating clusters:granular hydrodynamics beyond the freezing point?[J].Physical Review Letters,2003,91(2):024301.
    [14]EGGERS J.Sand as Maxwell’s demon[J].Physical Review Letters,1999,83(25):5322-5325.
    [15]LIU W,TOMLINSON G R,RONGONG J A.The dynamic characterisation of disk geometry particle dampers[J].Journal of Sound and Vibration,2005,280(3):849-861.
    [16]ESHUIS P.Leidenfrost effect and coarsening in a granular gas[D].Enschede,Holand:University of Twente,2003:18-19.
    [17]ESHUIS P,VAN DER WEELE K,VAN DER MEER D,et al.Granular Leidenfrost effect:experiment and theory of floating particle clusters[J].Physical Review Letters,2005,95(25):258001.
    [18]JOHNSON K L.Contact mechanics[M].London,UK:Cambridge University Press,1987:47-48.
    [19]MINDLIN R D,DERESIEWICZ H.Elastic spheres in contact under varying oblique forces[J].Journal of Applied Mechanics,1953,20(3):327-344.
    [20]TSUJI Y,TANAKA T,ISHIDA T.Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J].Powder Technology,1992,71(3):239-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700