驱油型表面活性剂压裂液的研发与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and application of flooding surfactant fracturing fluid
  • 作者:范华波 ; 薛小佳 ; 李楷 ; 周晓群 ; 吴顺林
  • 英文作者:Fan Huabo;Xue Xiaojia;Li Kai;Zhou Xiaoqun;Wu Shunlin;National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields;Oil and Gas Technology Research Institute of PetroChina Changqing Oilfield Company;
  • 关键词:致密油 ; 表面活性剂 ; 分散性 ; 润湿改变性能 ; 驱油效率
  • 英文关键词:tight oil;;surfactant;;dispersibility;;wetting change performance;;drive efficiency
  • 中文刊名:STQG
  • 英文刊名:Chemical Engineering of Oil & Gas
  • 机构:低渗透油气田勘探开发国家工程实验室;中国石油长庆油田分公司油气工艺研究院;
  • 出版日期:2019-02-15
  • 出版单位:石油与天然气化工
  • 年:2019
  • 期:v.48;No.249
  • 基金:国家重大科技专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(2016ZX05050)和“鄂尔多斯盆地致密油开发示范工程”(2017ZX05069)
  • 语种:中文;
  • 页:STQG201901014
  • 页数:6
  • CN:01
  • ISSN:51-1210/TE
  • 分类号:79-84
摘要
体积压裂理念带来了非常规油气资源勘探开发的技术革命,微裂缝渗吸驱油理论改变了压裂液行业的传统认识。从分子设计入手,合成了Gemini型表面活性剂,配套优选了炔醇纳米二氧化硅油剥离剂,构建研发了驱油型表面活性剂压裂液。与常规胍胶压裂液体系比较,该体系具有较好的分散性和润湿改变性能,渗吸效率为38%,驱油效率达20%以上。现场试验见油速度快,投产初期产量高,含水低,增产效果明显。
        The concept of volume fracturing has brought about a technological revolution in the exploration and development of unconventional oil and gas resources.The theory of micro-fracture imbibition and displacement has changed the traditional understanding of the fracturing fluid industry.In this paper,the Gemini surfactant was synthesized by the molecular design,and the acetylenic alcohol nanosilica oil release agent was optimized and matched,then the oil displacement surfactant fracturing fluid was developed.Compared with the conventional guanidine gum fracturing fluid system,the system has better dispersion and wettability change performance,with an osmotic efficiency of 38% and an oil displacement efficiency of more than 20%.The on-site test shows that the oil speed is fast,the output at the initial stage of production is high,the water content is low,and the effect of increasing production is obvious.
引文
[1] GUPTA R, MOHANTY K K. Temperature effects on surfactant-aided imbibition into fractured carbonates[J]. SPE Journal, 2010, 15(3): 588-597.
    [2] SUN X F, ZHANG Y Y, Chen G P, et al. Application of nanoparticles in enhanced oil recovery: a critical review of recent progress[J]. Energies, 2017, 10(3): 345.
    [3] HENDRANINGRAT L, LI S D, TORSAETER O. A coreflood investigation of nanofluid enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2013, 111: 128-138.
    [4] VENGSARKAR P S, ROBERTS C B. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles[J]. Journal of Nanoparticle Research, 2014, 16(10): 2627.
    [5] ZHANG H, NIKOLOV A, WASAN D. Enhanced oil recovery (EOR) using nanoparticle dispersions: underlying mechanism and imbibition experiments[J]. Energy & Fuels, 2014, 28(5): 3002-3009.
    [6] 陈鹏飞, 刘友权, 邓素芬, 等. 页岩气体积压裂滑溜水的研究及应用[J]. 石油与天然气化工, 2013, 42(3): 270-273.
    [7] 刘卫东, 姚同玉, 刘先贵, 等. 表面活性剂体系渗吸[M]. 北京: 石油工业出版社, 2007.
    [8] 韩冬, 彭昱强, 郭尚平. 表面活性剂对水湿砂岩的渗吸规律及其对采收率的影响[J]. 中国石油大学学报(自然科学版), 2009, 33(6): 142-147.
    [9] 宋其圣, 郭新利, 苑世领, 等. 十二烷基苯磺酸钠在SiO2表面聚集的分子动力学模拟[J]. 物理化学学报, 2009, 25(6): 1053-1058.
    [10] 毕只初, 史彦, 颜文华, 等. 十六烷基三甲基溴化铵在二氧化硅表面吸附的研究[J]. 化学试剂, 1997, 19(6): 331-333.
    [11] 李俊刚. 改变岩石润湿性提高原油采收率机理研究[D]. 大庆: 大庆石油学院, 2006.
    [12] 汪伟英, 张公社. 束缚水饱和度、岩石性质对自吸的影响[J]. 石油学报, 2000, 21(3): 66-69.
    [13] 杨正明, 张仲宏, 刘学伟, 等. 低渗/致密油藏分段压裂水平井渗流特征的物理模拟及数值模拟[J]. 石油学报, 2014, 35(1): 85-92.
    [14] 毕只初, 廖文胜. CTAB在硅胶表面吸附引起的润湿性变化和模拟驱油[J]. 物理化学学报, 2002, 18(11): 962-966.
    [15] 王冲, 张贵才, 张建强, 等. 陈庄原油超低界面张力驱油体系研究[J]. 石油与天然气化工, 2012, 41(1): 74-78.
    [16] 武建明, 石彦, 韩慧玲, 等. 聚合物微球调驱技术在沙南油田的研究与应用[J]. 石油与天然气化工, 2015, 44(6): 82-84.
    [17] 高燕, 张冕, 李泽锋. 高效驱油压裂液的开发与应用[J]. 钻井液与完井液, 2017, 34(6): 111-116.
    [18] 徐辉. 超高分子缔合聚合物溶液特性及驱油性能研究[J]. 石油与天然气化工, 2014, 43(1): 62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700