可恢复功能的门式钢桥墩根部耗能墩柱受力机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical mechanism of replaceable energy-dissipated piers at the bottom of a new type of steel portal bridge piers
  • 作者:骆杰鑫 ; 李海锋 ; 罗俊 ; 南子森 ; 孙伟
  • 英文作者:LUO Jiexin;LI Haifeng;LUO Jun;NAN Zisen;SUN Wei;College of Civil Engineering, Huaqiao University;Key Laboratory for Structure Engineering and Disaster Prevention of Fujian Province;
  • 关键词:桥梁工程 ; 门式钢桥墩 ; 数值分析 ; 箱形钢墩柱 ; 可恢复功能
  • 英文关键词:bridge engineering;;steel portal bridge pier;;numerical analysis;;steel box pier;;earthquake-resilient
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:华侨大学土木工程学院;福建省结构工程与防灾重点实验室;
  • 出版日期:2019-07-28
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.346
  • 基金:国家自然科学基金项目(51778248;51408240);; 福建省自然科学基金面上项目(2018J01075);; 华侨大学研究生科研创新基金资助项目(17013086026)
  • 语种:中文;
  • 页:ZDCJ201914032
  • 页数:11
  • CN:14
  • ISSN:31-1316/TU
  • 分类号:228-238
摘要
为研究新型门式钢桥墩的抗震性能,探讨了设置可更换低屈服点加劲耗能壁板的箱形钢墩柱受到反复轴向拉压作用的受力机理。采用ANSYS有限元软件,建立了设置无加劲肋和3种不同加劲肋类型的箱形钢墩柱数值模型。对比分析数值模拟结果与轴压试验测试结果,两者吻合较好,验证了有限元模型的可靠性。在此基础上,通过对比反复轴向拉压下数值分析试件的骨架曲线、位移延性系数及滞回耗能能力,探讨了低屈服点钢板的高度、宽度及厚度、加劲肋的厚度、宽度及数量等因素对箱形耗能钢墩柱受力性能的影响。研究结果表明:反复轴向拉压作用下,设置加劲肋后箱形钢墩柱的承载力增大;设置十字形加劲肋或井字形加劲肋能增大箱型钢墩柱的延性和耗能能力。
        In order to investigate the seismic performance of a new type of steel portal bridge piers, the mechanical mechanism of steel box piers with replaceable low yield point stiffening ribs under cyclic axial load was discussed. The finite element analysis software ANSYS was used to establish the numerical models of steel box piers with no stiffener as well as with three different types of stiffeners. The numerical results are in agreement with the axial compression experimental results, which verifies the reliability of the finite element models. Furthermore, the effects of the low yield point steel plate's height, width and thickness and the stiffener's thickness, width and quantity on the mechanical behaviors of steel box piers were analyzed by comparing the mechanical behaviors of the specimens in numerical analysis,such as the skeleton curves, displacement ductility coefficient and energy dissipation capacity under cyclic axial load. The results show that the load-bearing capacity of steel box piers with stiffening ribs is increased under cyclic axial load. Setting cross-shaped stiffeners or octothorpe-shaped stiffeners can increase the ductility and energy dissipation capacity of steel box piers.
引文
[1]WATANABE E,SUGIURA K,OYAWA W O.Effects of multidirectional displacement paths on the cyclic behaviour of rectangular hollow steel columns[J].Journal Structure Mechanical Earthquake Engineering,2000,17(1):69-85.
    [2]DANG J,AOKI T.Bidirectional loading hybrid tests of square cross-sections of steel bridge piers[J].Earthquake Engineering Structural Dynamics,2013,42:1111-1130.
    [3]LIU J P,ZHOU X H,ZHANG S M.Seismic behaviour of square CFT beam-columns under biaxial bending moment[J].Journal of Constructional Steel Research,2008,64:1473-1482.
    [4]YUAN H H,DANG J,AOKI T.Experimental study of the seismic behavior of ppartially concrete filled steel bridge piers under bidirectional dynamic loading[J].Earthquake Engineering Structural Dynamics,2013,42:2197-2216.
    [5]USAMI T,GE H B.Ductility of concrete-filled steel box column under cyclic loading[J].Journal of Structural Engineering,ACSE,1994,120(7):2021-2040.
    [6]GE H B,USAMI T.Cyclic tests of concrete-filled steel box columns[J].Journal of Structural Engineering,ASCE,1996,122(10):1169-1177.
    [7]USAMI T,GE H B,SAIZUKA K.Behavior of partially concrete-filled steel bridge piers under cyclic and dynamic loading[J].Journal of Constractional Steel Research,1998,41(2):121-136.
    [8]GE H B,SUSANTHA K A S,SATAKE Y,et al.Seismic demand predictions of concrete-filled steel box columns[J].Engineering Structures,2003,25:337-345.
    [9]王跃东,高圣彬.内填部分混凝土箱形截面钢桥墩的滞回性能研究[J].四川建筑科学研究,2012,38(1):14-18.WANG Yuedong,GAO Shengbin.Research on the hysteretic behaviors of partially concrete-filled steel box-section bridge piers[J].Chinese Journal of Sichuan Building Science,2012,38(1):14-18.
    [10]USAMI T,ZHENG Y,GE H B.Recent research developments in stability and ductility of steel bridge structures general report[J].Journal of Constructional Steel Research,2000,55:183-209.
    [11]NISHIKAWA K,YAMAMOTO S,NATORI T,et al.Retrofitting for seismic upgrading of steel bridge columns[J].Engineering Structures,1998,20(4/5/6):540-551.
    [12]AOKI T,TAKAKU T,FUKUMOTO Y,et al.Experimental investigation for seismic performance of framed structures having longitudinally profiled plates[J].Journal of Constructional Steel Research,2008,64:875-881.
    [13]HSU H L,CHANG D L.Upgrading the performance of steel box piers subjected to earthquakes[J].Journal of Constructional Steel Research,2001,57:945-958.
    [14]YAMAO T,IWATSUBO K,YAMAMURO T,et al.Steel bridge piers with inner cruciform plates under cyclic loading[J].Thin-Walled Structures,2002,40:183-197.
    [15]SUSANTHA K A S,AOKI T,KUMANO T,et al.Applicability of low-yield-strength steel for ductility improvement of steel bridge piers[J].Engineering Structures,2005,27:1064-1073.
    [16]KITADA T,MATSUMURA M,OTOGURO Y.Seismic retrofitting techniques using an energy absorption segment for steel bridge piers[J].Engineering Structures,2003,25:621-635.
    [17]ISMAIL R E S,FATHELBAB F A,ELDIN H A Z E,et al.Numerical investigations on dynamic performance of stiffened box steel bridge piers[J].International Journal of Steel Structures,2012,12(2):139-155.
    [18]GE H B,USAMI T.Cyclic tests of concrete-filled steel box columns[J].Journal of Structural Engineering,ASCE,1996,122(10):1169-1177.
    [19]吉伯海,高圣彬.钢桥抗震与损伤控制设计指南(基础篇)[M].南京:河海大学出版社,2008.
    [20]CHEN S J,CHEN J.Steel bridge columns with pre-selected plastic zone for seismic resistance[J].Thin-Walled Structures,2009,47:31-38.
    [21]LI H F,LUO J,HAN F,et al.Tests of new box steel replaceable piers under axial compression[J].International Journal of Steel Structure,2019,19(3):896-913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700