海岸梯度上黑松针叶形态与解剖结构性状的变化规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation in Needle Morphology and Anatomy of Pinus thunbergii Along Coastal-inland Gradient
  • 作者:张鹏 ; 孙阳 ; 虞木奎 ; 吴统贵
  • 英文作者:ZHANG Peng;SUN Yang;YU Mu-Kui;WU Tong-Gui;East China Coastal Forest Ecosystem Long-term Research Station,Research Institute of Subtropical Forestry,CAF;Swan National Nature Reserve of Rongcheng;
  • 关键词:海岸梯度 ; 形态 ; 解剖结构 ; 风胁迫 ; 黑松
  • 英文关键词:coastal-inland gradient;;morphology;;anatomy;;wind;;Pinus thunbergii
  • 中文刊名:MBZW
  • 英文刊名:Bulletin of Botanical Research
  • 机构:国家林业局华东沿海防护林生态系统定位观测研究站中国林业科学研究院亚热带林业研究所;山东荣成大天鹅国家级自然保护区;
  • 出版日期:2018-05-15
  • 出版单位:植物研究
  • 年:2018
  • 期:v.38;No.184
  • 基金:国家自然科学基金(31770756)~~
  • 语种:中文;
  • 页:MBZW201803005
  • 页数:6
  • CN:03
  • ISSN:23-1480/S
  • 分类号:25-30
摘要
风对树木形态、生理和生长的影响一直是生态学研究的热点和难点问题,目前主要采用模拟风速或机械刺激的方式来研究树木对风胁迫的响应与适应变化,无法准确反映出树木在风环境下的长期适应机制。本文以海岸60年生黑松林(Pinus thunbergii)为对象,分析了海岸距离梯度上黑松迎风面和背风面针叶长度、宽度、面积、比叶面积、角质层厚度、表皮厚度等形态和解剖结构特征的变化规律。结果表明:黑松迎风面针叶长度、宽度、周长、面积、厚度和比叶面积随着离海岸距离的减小逐渐减小(P<0.05);而表皮厚度、角质层厚度和导管孔径则随着离海岸距离的减小逐渐增加(P<0.05);背风面各指标均无明显变化规律。黑松迎风面与背风面针叶性状(比叶面积除外)主要在海岸500 m内存在显著差异(P<0.05)。可以看出,随着海风胁迫的增加,黑松通过降低针叶长、宽等形态指标,有效减少了风胁迫下黑松的受力面积,是一种躲避策略;而增加针叶表皮、角质层厚度和导管孔径等解剖结构指标,则增强了针叶坚韧性和保证针叶的水分供应,是一种忍受策略,这些策略有利于该树种在大风环境中得以更好的生存。
        The effect of wind on the morphology,physiological and growth of trees has been a topic and difficulty of ecology. At present,response and adaptation of trees to wind were determined through short-time simulation wind or mechanical stimulation,which cannot reflect the long-term adaptation mechanism of trees in the natural windy environment. Here,needle morphology,including length,width,area,specific leaf area( SLA),and anatomy structure,including cuticle and epidermal thickness,were determined for 60-a Pinus thunbergii along coastal-inland gradient. Needle length, width, perimeter, area, thickness and SLA on windward of P. thunbergii decreased from inland to coast,while cuticle thickness,epidermal thickness and vessel diameter increased( P < 0. 05). However,there were not significant difference for these indices on leeward along coastal-inland gradient. Needle traits on the same gradient were found to be significant differences between windward and leeward within 500 m from coastline. Therefore,with the increasing of sea wind stress,needle morphological indices were decreased to reduce the force bearing area,which was a kind of avoidance strategy. Meanwhile,the needle anatomical indices were increased to improve needle toughness and guaranteeadequate water supply,which was a kind of tolerance strategy. These results showed the response and adaption strategies in coastal wind environment for P. thunbergii.
引文
1.Jaffe M J.Thigmomorphogenesis:the response of plant growth and development to mechanical stimulation:with special reference to Bryonia dioica[J].Planta,1973,114(2):143-157.
    2 .Anten N P R,Alcalá-Herrera R,Schieving F,et al.Wind and mechanical stimuli differentially affect leaf traits in Plantago major[J].New Phytologist,2010,188(2):554-564.
    3 .Schymanski S J,Or D.Wind increases leaf water use efficiency[J].Plant,Cell&Environment,2016,39(7):1448-1459.
    4 .Vogel S.Leaves in the lowest and highest winds:temperature,force and shape[J].New Phytologist,2009,183(1):13-26.
    5 .Telewski F W.Is windswept tree growth negative thigmotropism?[J].Plant Science,2012,184:20-28.
    6 .南江,赵晓英,余保峰.模拟长期大风对木本猪毛菜表观特征的影响[J].生态学报,2012,32(20):6354-6360.Nan J,Zhao X Y,Yu B F.The effect of simulated chronic high wind on the phenotype of Salsola arbuscula[J].Acta Ecologica Sinica,2012,32(20):6354-6360.
    7 .南江,赵晓英,原慧,等.霸王和木本猪毛菜在遮风和不遮风环境下的表型特征差异[J].生态学报,2014,34(20):5758-5765.Nan J,Zhao X Y,Yuan H,et al.Phenotype differences between Zygophyllum xanthoxylum and Salsola arbuscula from Open and Wind-Protected Sites[J].Acta Ecologica Sinica,2014,34(20):5758-5765.
    8 .Wu T G,Zhang P,Zhang L,et al.Morphological response of eight Quercus species to simulated wind load[J].PLo S One,2016,11(9):e0163613.
    9 .古力米热·热孜,赵晓英,原慧.模拟长期大风胁迫对霸王叶解剖结构特征的影响[J].西北植物学报,2012,32(10):2047-2052.Gulimire·Rezi,Zhao X Y,Yuan H.Leaf anatomical structure of Zygophyllum xanthoxylum under chronic high wind[J].Acta Botanica Boreali-Occidentalia Sinica,2012,32(10):2047-2052.
    10 .Retuerto R,Ian Woodward F.Effects of windspeed on the growth and biomass allocation of white mustard Sinapis alba L.[J].Oecologia,1992,92(1):113-123.
    11 .Stokes A,Nicoll B C,Coutts M P,et al.Responses of young Sitka spruce clones to mechanical perturbation and nutrition:effects on biomass allocation,root development,and resistance to bending[J].Canadian Journal of Forest Research,1997,27(7):1049-1057.
    12 .赵哈林,何玉惠,岳广阳,等.风吹、沙埋对沙地植物幼苗生长和光合蒸腾特性的影响[J].生态学杂志,2010,29(3):413-419.Zhao H L,He Y H,Yue G Y,et al.Effects of wind blow and sand burial on the seedling growth and photosynthetic and transpiration rates of desert plants[J].Chinese Journal of Ecology,2010,29(3):413-419.
    13 .于云江,史培军,鲁春霞,等.不同风沙条件对几种植物生态生理特征的影响[J].植物生态学报,2003,27(1):53-58.Yu Y J,Shi P J,Lu C X,et al.Response of the eco-physiological characteristics of some plants under blown sand[J].Acta Phytoecologica Sinica,2003,27(1):53-58.
    14 .Murren C J,Pigliucci M.Morphological responses to simulated wind in the genus Brassica(Brassicaceae):allopolyploids and their parental species[J].American Journal of Botany,2005,92(5):810-818.
    15 .Pruyn M L,EwersШB J,Telewski F W.Thigmomorphogenesis:changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation[J].Tree Physiology,2000,20(8):535-540.
    16 .Cordero R A.Ecophysiology of Cecropia schreberiana saplings in two wind regimes in an elfin cloud forest:growth,gas exchange,architecture and stem biomechanics[J].Tree Physiology,1999,19(3):153-163.
    17 .张丹,李传荣,许景伟,等.沙质海岸黑松分枝格局特征及其抗风折能力分析[J].植物生态学报,2011,35(9):926-936.Zhang D,Li C R,Xu J W,et al.Branching pattern characteristics and anti-windbreakage ability of Pinus thunbergii in sandy coast[J].Chinese Journal of Plant Ecology,2011,35(9):926-936.
    18 .毛伟,李玉霖,张铜会,等.不同尺度生态学中植物叶性状研究概述[J].中国沙漠,2012,32(1):33-41.Mao W,Li Y L,Zhang T H,et al.Research advances of plant leaf traits at different ecology scales[J].Journal of Desert Research,2012,32(1):33-41.
    19 .季子敬,全先奎,王传宽.兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性[J].生态学报,2013,33(21):6967-6974.Ji Z J,Quan X K,Wang C K.Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes[J].Acta Ecologica Sinica,2013,33(21):6967-6974.
    20 .韩广轩,王光美,张志东,等.烟台海岸黑松防护林种群结构及其随离岸距离的变化[J].林业科学,2008,44(10):8-13.Han G X,Wang G M,Zhang Z D,et al.Population structure of the Pinus thunbergii coastal protection forest and its spatial variation at different distances to coastline in Yantai[J].Scientia Silvae Sinicae,2008,44(10):8-13.
    21 .张志东,韩广轩,毛培利,等.成年个体密度、距海远近及下层植被对烟台黑松海防林天然更新的影响[J].自然资源学报,2009,24(5):782-790.Zhang Z D,Han G X,Mao P L,et al.Effects of adult tree density,distance to coast and understory on natural regeneration of Pinus thunbergii coastal protection forest in Yantai region[J].Journal of Natural Resources,2009,24(5):782-790.
    22 .李明财,朱教君,孙一荣.东北次生林主要树种比叶面积对光照强度的响应[J].生态学杂志,2009,28(8):1437-1442.Li M C,Zhu J J,Sun Y R.Responses of specific leaf area of dominant tree species in Northeast China secondary forests to light intensity[J].Chinese Journal of Ecology,2009,28(8):1437-1442.
    23 .余倩.不同恢复时期马尾松林群落结构动态格局及主要树种的生态适应[D].上海:华东师范大学,2012.Yu Q.Dynamic pattern of the Pinus massoniana forest structure and ecological adaptation of main trees in different restoring periods[D].Shanghai:East China Normal University,2012.
    24 .Smith V C,Ennos A R.The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L.[J].Journal of Experimental Botany,2003,54(383):845-849.
    25 .Kitaya Y,Tsuruyama J,Shibuya T,et al.Effects of air current speed on gas exchange in plant leaves and plant canopies[J].Advances in Space Research,2003,31(1):177-182.
    26 .Huang P,Wan X C,Lieffers V J.Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings[J].Physiologia Plantarum,2016,157(1):85-94.
    27 .Hoad S P,Jeffree C E,Grace J.Effects of wind and simulated acid mist on leaf cuticles[M].//Percy K E,Cape J N,Jagels R,et al.Air Pollutants and the Leaf Cuticle.Berlin,Heidelberg:Springer,1994:225-237.
    28 .Kimmins J P.Forest ecology[M].New York,USA:Macmillan Publishing Company,1987.
    29 .Whitehead F H.Experimental studies of the effect of wind on plant growth and anatomy.III.Soil moisture relations[J].New Phytologist,1963,62(1):80-85.
    30 .刘玉冰,李新荣,李蒙蒙,等.中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J].植物生态学报,2016,40(11):1189-1207.Liu Y B,Li X R,Li M M,et al.Leaf(or assimilation branch)epidermal micromorphology of desert plant in arid and semi-arid areas of China[J].Chinese Journal of Plant Ecology,2016,40(11):1189-1207.
    31 .Zwieniecki M A,Boyce C K.Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology[J].Proceedings Biological Sciences,2014,281(1779):20132829.
    32 .吴丽君,李志辉,杨模华,等.赤皮青冈幼苗叶片解剖结构对干旱胁迫的响应[J].应用生态学报,2015,26(12):3619-3626.Wu L J,Li Z H,Yang M H,et al.Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress[J].Chinese Journal of Applied Ecology,2015,26(12):3619-3626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700