基于Drucker-Prager模型的振动压实有限元分析及试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:FEM Analysis and Experimental Research of Vibration Compaction Based on Drucker-Prager Model
  • 作者:马丽英 ; 李茂其 ; 王维 ; 曹源文
  • 英文作者:MA Liying;LI Maoqi;WANG Wei;CAO Yuanwen;School of Mechatronics & Vehicle Engineering,Chongqing Jiaotong University;
  • 关键词:车辆工程 ; 振动压实 ; Drucker-Prager模型 ; ABAQUS建模 ; 应力分布 ; 加速度
  • 英文关键词:vehicle engineering;;vibration compaction;;Drucker-Prager mode;;ABAQUS modelling;;stress distribution;;acceleration
  • 中文刊名:CQJT
  • 英文刊名:Journal of Chongqing Jiaotong University(Natural Science)
  • 机构:重庆交通大学机电与车辆工程学院;
  • 出版日期:2019-05-13
  • 出版单位:重庆交通大学学报(自然科学版)
  • 年:2019
  • 期:v.38;No.208
  • 基金:江西省交通厅重点科技项目(2012C0019)
  • 语种:中文;
  • 页:CQJT201905019
  • 页数:6
  • CN:05
  • ISSN:50-1190/U
  • 分类号:112-117
摘要
为了研究振动压路机压实特性及振动轮与土壤动态响应关系,利用ABAQUS建立了"振动轮-土壤"有限元模型,讨论了Mohr-Coulomb模型和线性Drucker-Prager模型间的关系及适用条件,分析了振动轮下土壤应力分布特性及土壤参数对振动轮动态响应的影响,并对模型进行了试验验证。结果表明:当摩擦角≤22°时,土体单元应当用Drucker-Prager模型;当摩擦角>22°时,土体单元应当用Mohr-Coulomb模型。土壤的竖向应力沿着振动轮轴向呈对称分布,在振动轮行进方向沿着前进方向偏移,且竖向应力随着土壤深度的增加而快速降低。在振动压路机合理工况内,保持工作参数不变,振动压路机振动轮垂直加速度有效值随着压实遍数增加,模型基本正确,得到了压实度与加速度有效值的回归方程,为新型压实度监测系统提供了思路。
        In order to further study the compaction characteristics of vibratory wheel and the dynamic response relationship between vibratory wheel and soil,the finite element model of "vibratory wheel-soil"was established by ABAQUS. The relationship and the applicable conditions between Mohr-Coulomb model and linear Drucker-Prager model were discussed. The distribution characteristics of soil stress under vibratory wheel and the influence of soil parameters on the dynamic response of vibratory wheel were analyzed,and the model was tested and verified. The results show that: DruckerPrager model is more suitable for modeling the soil unit,when the friction angle is less than 22°. When the friction angle is more than 22°,the Mohr-Coulomb model should be used to model the soil. The vertical stress of soil is symmetrically distributed along the axis of vibratory wheel,and shifts along the forward direction of vibratory wheel. The vertical stress of soil decreases sharply with the increase of depth of soil. Under the reasonable working conditions of the vibratory roller,with the working parameters unchanged,the effective value of the vertical acceleration of the vibrating wheel of a vibrating roller increases with the number of compaction cycles. The proposed model is basically correct,and the regression equation between the compaction degree and the effective value of acceleration is obtained,which provides the idea for the new compaction degree monitoring system.
引文
[1]交通运输部公路科学研究院.公路工程质量检验评定标准:JTGF80/1—2017[S].北京:人民交通出版社股份有限公司,2017.Research Institute of Highway Ministry of Transport. Inspection and Evaluation Quality Standards for Highway Engineering:JTGF80/1—2017[S]. Beijing:China Communications Press Co.,Ltd.,2017.
    [2]刘兴国,马红梅,黄玉江,等.沥青路面压实度实时监控技术研究[J].公路交通科技(应用技术版),2012,29(11):209-212.LIU Xingguo,MA Hongmei,HUANG Yujiang,et al. Real-time monitoring technology of asphalt pavement compaction[J]. Journal of Highway and Transportation Research and Development,2012,29(11):209-212.
    [3]邱声,曹源文.非线性有限元在振动压实中的应用[J].重庆交通大学学报(自然科学版),2011,30(2):270-272.QIU Sheng,CAO Yuanwen.Application of nonlinear finite element to vibration compaction[J]. Journal of Chongqing Jiaotong University(Natural Science),2011,30(2):270-272.
    [4]黄志福,梁乃兴,赵毅,等.路面振动压实系统动力学仿真分析[J].重庆交通大学学报(自然科学版),2016,35(2):50-53.HUANG Zhifu,LIANG Naixing,ZHAO Yi,et al.Dynamic simulation of pavement vibration compaction system[J]. Journal of Chongqing Jiaotong University(Natural Science Edition),2016,35(2):50-53.
    [5] MACIEJEWSKI J,JARZ BOWSKI A. Experimental analysis of soil deformation below a rolling rigid cylinder[J]. Journal of Terramechanics,2004,41(4):223-241.
    [6]HIROMA T,WANJII S,KATAOKA T,et al. Stress analysis using fem on stress distribution under a wheel considering friction with adhesion between a wheel and soil[J]. Journal of Terramechanics,1997,34(4):225-233.
    [7]费康,张建伟. ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2009.FEI Kang,ZHANG Jianwei. ABAQUS in Geotechnical Engineering[M].Beijing:China Water Resources and Hydropower Press,2009.
    [8]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报,2006,28(12):735-739.DENG Chujian,HE Guojie,ZHENG Yingren.Application research of DP series criteria based on M-C criterion in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering,2006,28(12):735-739.
    [9]刘世涛,程培峰.基于ABAQUS土体数值分析的本构模型[J].低温建筑技术,2010,32(2):90-92.LIU Shitao,CHENG Peifeng. Constitutive model based on numerical analysis of ABAQUS soils[J]. Low Temperature Building Technology,2010,32(2):90-92.
    [10]朱向荣,王金昌. ABAQUS软件中部分土模型简介及其工程应用[J].岩土力学,2004,25(增刊2):144-148.ZHU Xiangrong,WANG Jinchang.A brief introduction of some soil models in ABAQUS software and its engineering application[J]. Rock and Soil Mechanics,2004,25(Sup2):144-148.
    [11]苏继宏,汪正兴,任文敏,等.岩土材料破坏准则研究及其应用[J].工程力学,2003,20(3):72-77.SU Jihong, WANG Zhengxing, REN Wenmin, et al. Study of geotechnical material failure criterion and its application[J].Engineering Mechanics,2003,20(3):72-77.
    [12]张子强,常焱.振动偏心轮结构设计及其有限元分析[J].江南大学学报(自然科学版),2011,10(5):573-577.ZHANG Ziqiang,CHANG Yan. Structure design of vibration eccentric wheel and its finite element analysis[J].Journal of Jiangnan University(Natural Science Edition),2011,10(5):573-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700