微重力环境下气泡分离器工作机理及试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Working Principle of Bubble Separator in Microgravity and Its Experimental Study
  • 作者:刘桐宇 ; 张志春 ; 卞强 ; 臧华兵 ; 冯红旗 ; 刘伟波
  • 英文作者:Liu Tongyu;Zhang Zhichun;Bian Qiang;Zang Huabing;Feng Hongqi;Liu Weibo;China Astronaut Research and Training Center;
  • 关键词:气泡分离器 ; 抛物线飞行 ; 微重力 ; 气液分离
  • 英文关键词:bubble separator;;parabolic flight;;microgravity;;gas-liquid separation
  • 中文刊名:HYXB
  • 英文刊名:Space Medicine & Medical Engineering
  • 机构:中国航天员科研训练中心;
  • 出版日期:2019-04-15
  • 出版单位:航天医学与医学工程
  • 年:2019
  • 期:v.32
  • 基金:中国载人航天工程基金资助项目(KCTH00HK11)
  • 语种:中文;
  • 页:HYXB201902007
  • 页数:5
  • CN:02
  • ISSN:11-2774/R
  • 分类号:44-48
摘要
目的研究气泡分离器微重力环境下的工作机理和性能,保证环境控制与生命保障系统在轨状态下的正常运行。方法通过简化气泡分离器的物理模型及工作过程,抽象出气泡分离器的数学模型,并对影响气泡分离器收集性能与分离效率的锥角、流量等参数进行分析,之后利用法国NOVESPACE公司的失重飞机,对锥角和流量的具体影响展开试验研究。结果气泡分离器能够在微重力环境下有效工作,不同锥角和流量下的气泡收集性能与排除试验显示,流量在40~50L/h,锥角34°时,气泡分离器工作性能最优,气泡收集性能可达98%以上,排除效率77%以上。结论气泡收集和排除的过程符合理论预期,保证了环境控制与生命保障系统微重力环境下的正常运行,可为后续产品设计改进提供指导。
        Objective To study the working principle and performance of bubble separator in microgravity environment,so as to guarantee the normal operation of the environment control and life support system on orbit.Methods After simplifying the physical model and working process of the bubble separator,the mathematical model of the bubble separator was established.The parameters affecting the collection performance and the separation efficiency of the bubble separator including the cone angle and flow rate were analyzed.Then the effects of the cone angle and the flow rate were tested in parabolic flights by NOVESPACE company in France.Results The bubble separator could work effectively in microgravity environment.The bubble collection and removal tests at different cone angles and flow rates showed that the performance of the bubble separator was the best at 40~50 L/h flow rate and34°cone angle.The bubble collection performance reached over 98%and the removal efficiency was over 77%.Conclusion The process of bubble collection and removal is in accordance with the theoretical expectation and the normal operation of the environment control and life support system in microgravity can be ensured.It may provide reference for the improvement of future product design.
引文
[1]邱瑞红,吴志强,高峰,等.空间动态水气分离器失重飞行试验研究[J].载人航天,2015,21(3):212-216.Qiu R,Wu Z,Gao F,et al.Experimental study on performance of a space dynamic gas/liquid separator aboard zero-g plane[J].Manned Spaceflight,2015,21(3):212-216.
    [2]Hoyt N,Kang M F,Kharraz A,et al.Cyclonic two-phase flow separator experimentation and simulation for use in a microgravity environment[J].Journal of Physics Conference Series:2011,327(1):111-118.
    [3]刘鹏,吴克,杜王芳,等.微重力池沸腾中的气泡行为实验研究[J].空间科学学报,2018,38(2):221-226.Liu P,Wu K,Du W,et al.Experimental study on bubble behaviors in microgravity pool boiling[J].Chin J Space Sci,2018,38(2):221-226.
    [4]张亚,孙凤焕,于继胜,等.再生燃料电池微重力气液分离器性能仿真分析[J].电源技术,2017,41(6):863-866.Zhang Y,Sun F,Yu J,et al.Simulation study on performance of micro-gravity gas/liquid separator of RFCS[J].Chinese Journal of Power Sources,2017,41(6):863-866.
    [5]张文伟,柯鹏.微重力动态水气分离器性能仿真与理论分析[J].航空学报,2016,37(9):2646-2658.Zhang W,Ke P.Performance simulation and theoretical analysis of microgravity dynamic gas-liquid separator[J].Acta Aeronautica et Astronautica Sinica,2016,37(9):2646-2658.
    [6]Dean WC.Zero gravity phase separator technologies-past present and future[R].SAE Technical Paper Series,No.921160,1992.
    [7]Nathaniel H,Yasuhiro K,Jaikrishnan K.Computational investigation of the NASA cascade cyclonic separation device[J].AIAA Paper,No.2008-809,2008.
    [8]Westermann H,Müller R.Design validation via parabolic flight tests of a condensate buffer equalizing a discontinuous gas/water flow between a condensing heat exchanger and a water separator[R].SAE Technical Paper Series,No.2006-01-2087,2006.
    [9]张文伟,柯鹏,韩雅慧.微重力动态气液分离界面多尺度仿真方法[C]//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集(B).中国力学学会、北京理工大学,2017:14-17.Zhang W,Ke P,Han Y.Multi-scale simulation method for dynamic gas-liquid separation interface in microgravity[C]//Proceedings B of the 60th anniversary of Chinese Society of Theoretical and Applied Mechanics.The Chinese Society of Theoretical and Applied Mechanics,Beijing Institute of Technology,2017:14-17.
    [10]黄永虎,高峰,董钦尧.微重力条件下动态水气分离器分离效率的数值模拟研究[C]//第十二届人-机-环境系统工程大会论文集.中国系统工程学会人-机-环境系统工程专业委员会,2012:4-7.Huang Y,Gao F,Dong Q.Investigation of separation efficiency in dynamic water-air separator of microgravity[C]//Proceedings of 12th International Conference on MMESE,Systems Engineering Society of China,2012:4-7.
    [11]赵建福,彭超,李晶.静态水器分离特性的失重飞机实验研究[J].工程热物理学报,2011,32(5):799-802.Zhao J,Peng C,Li J.Experimental study on performance of a static water-air two-phase separator aboard reduced gravity airplane[J].Journal of Engineering Thermophysics,2011,32(5):799-802.
    [12]叶卫东,仇亭亭.重力式气液分离器结构优化及分离性能数值模拟[J].机械制造与自动化,2018,47(2):133-136.Ye W,Qiu T.Structure optimization of gas-liquidgravity separator and numerical simulation of its separation performance[J].Machine Building&Automation,2018,47(2):133-136.
    [13]刘彩玉,耿海洋,张勇.气液分离方法及试验台的搭建[J].机械设计与制造工程,2017,46(6):71-75.Liu C,Geng H,Zhang Y.The test apparatus design of gas-liquid separation method and the construction[J].Machine Design and Manufacturing Engineering,2017,46(6):71-75.
    [14]Yu NZ,Wang SL,Liu HW,et al.Integrated obstacle microstructures for gas-liquid separation and flow switching in microfluidic networks[J].Sensors&Actuators:B.Chemical,2018,256(3):735-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700