CRISPR/Cas9基因编辑系统的发展及其在医学研究领域的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CRISPR/Cas9 system and its application in medical research
  • 作者:朱佩琪 ; 蒋伟东 ; 周诺
  • 英文作者:ZHU Peiqi;JIANG Weidong;ZHOU Nuo;Guangxi Medical University College of Stomatology;Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction;Guangxi Clinical Research Center for Craniofacial Deformity;Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment;
  • 关键词:CRISPR/Cas9 ; 基因治疗 ; 精确编辑 ; 脱靶效应 ; 风险
  • 英文关键词:CRISPR/Cas9;;gene therapy;;precision editing;;off-target effect;;risk
  • 中文刊名:ZGDX
  • 英文刊名:Chinese Journal of Comparative Medicine
  • 机构:广西医科大学附属口腔医院;广西口腔颌面修复与重建研究自治区级重点实验室;广西颅颌面畸形临床医学研究中心;颌面外科疾病诊治研究重点实验室(广西高校重点实验室);
  • 出版日期:2019-01-10 17:02
  • 出版单位:中国比较医学杂志
  • 年:2019
  • 期:v.29
  • 基金:国家自然科学基金(81670970)
  • 语种:中文;
  • 页:ZGDX201902020
  • 页数:8
  • CN:02
  • ISSN:11-4822/R
  • 分类号:122-129
摘要
近年来,CRISPR/Cas9技术凭借着其操作方便、设计简单、效率高、成本低以及可同时进行多位点编辑等优势,已成为当今最热的新一代基因编辑技术。CRISPR/Cas9独特的在RNA引导下对DNA进行靶向编辑的作用机制,不仅拓展了各相关领域的科研工作者们对生物体遗传调控的了解,更显示出优良的便捷性。近十年来,该系统在各生物、医学研究领域应用极为广泛,发展迅速。在医学领域,更是显示出极大的潜力。本文从CRISPR/Cas9基因编辑系统的研究历史、作用机理以及该技术在医学领域的应用等方面综述其最新研究进展,为更好地应用和优化CRISPR/Cas9提供参考。
        In recent years,CRISPR/Cas9 technology has become the hottest gene editing technology through its advantages of being flexible,efficient,cheap,and easy to operate,and its ability to edit multiple sites at the same time.The unique CRISPR/Cas9 RNA-guided mechanism of targeted editing of DNA has not only expanded our understanding of the genetic regulation of organisms,but also demonstrated superior convenience. In the last ten years,CRISPR/Cas9 has been widely used in various biological and medical research fields and has developed rapidly. Especially in the field of medicine,it has shown great potential. This paper summarizes recent advances in CRISPR/Cas9 technology,and the mechanism of action and application in medicine of the CRISPR/Cas9 gene editing system,to provide a reference for the application and optimization of this technology.
引文
[1] Hannon GJ. RNA interference[J]. Nature,2002,418(6894):244-51.
    [2] Klug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation[J]. Q Rev Biophys,2010,43(1):1-21.
    [3] Ran FA,Hsu PD,Wright J,et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc,2013,8(11):2281-2308.
    [4] Ishino Y,Shinagawa H,Makino K,et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J]. J Bacteriol,1987,169(12):5429-33.
    [5] Horvath P,Barrangou R. CRISPR-Cas,the immune system of bacteria and archaea[J]. Science,2010,327(5962):167-70.
    [6] Jansen R,Embden JD,Gaastra W,et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol,2002,43(6):1565-75.
    [7] Mojica FJ, Díez-Villase1or C, García-Martínez J, et al.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol,2005,60(2):174-82.
    [8] Bolotin A,Quinquis B,Sorokin A,et al. Clustered regularly interspaced short palindrome repeats(CRISPRs)have spacers of extrachromosomal origin[J]. Microbiol,2005,151(Pt 8):2551-61.
    [9] Barrangou R,Fremaux C,Deveau H,et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science,2007,315(5819):1709-12.
    [10] Brouns SJ,Jore MM,Lundgren M,et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science,2008,321(5891):960-4.
    [11] Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J].Science,2008,322(5909):1843-5.
    [12] Hale CR,Zhao P,Olson S,et al. RNA guided RNA cleavage by a CRISPR RNA-Cas protein complex[J]. Cell,2009,139(5):945-56.
    [13] Garneau JE,Dupuis ME,Villion M,et al. The CRISPR-Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature,2010,468(7320):67-71.
    [14] Deltcheva E,Chylinski K,Sharma CM,et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature,2011,471(7340):602-7.
    [15] Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophilus CRISPR-Cas system provides immunity in Escherichia coli[J]. Nucleic Acids Res,2011,39(21):9275-82.
    [16] Jinek M,Chylinski K,Fonfara I,et al. A programmable dualRNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-21.
    [17] Cong L,Ran FA,Cox D,et al. Multiplex genome engineering using CRISPR-Cas systems[J]. Science,2013,339(6121):819-23.
    [18] Ran FA,Hsu PD,Lin CY,et al. Double nicking by RNAguided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell,2013,154(6):1380-9.
    [19] Wang W,Ye C,Liu J,et al. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection[J]. PLoS One, 2014,9(12):e115987.
    [20] Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9endonucleases reveal RNA-mediated conformational activation[J]. Science,2014,343(6176):1247997.
    [21] Nishimasu H,Ran FA,Hsu PD,et al. Crystal structure of Cas9in complex with guide RNA and target DNA[J]. Cell,2014,156(5):935-49.
    [22] Ousterout DG, Kabadi AM, Thakore PI, et al. Multiplex CRISPR-Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy[J]. Nat Commun,2015,6:6244.
    [23] Roehm PC,Shekarabi M,Wollebo HS,et al. Inhibition of HSV-1 replication by gene editing strategy[J]. Sci Rep,2016,6:23146.
    [24] van Diemen FR,Kruse EM,Hooykaas MJ,et al. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections[J]. PLoS Pathog. 2016,12(6):e1005701.
    [25] Ophinni Y,Inoue M,Kotaki T,et al. CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures[J]. Sci Rep,2018,8(1):7784.
    [26] Wang H,Yang H,Shivalila CS,et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Casmediated genome engineering[J]. Cell,2013,153(4):910-8.
    [27] Yang H,Wang H,Shivalila CS,et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering[J]. Cell,2013,154(6):1370-9.
    [28] Cong L,Ran FA,Cox D,et al. Multiplex genome engineering using CRISPR-Cas9 systems[J]. Science,2013,339(6121):819-23.
    [29] Chang N,Sun C,Gao L,et al. Genome editing with RNA guided Cas9 nuclease in zebrafish embryos[J]. Cell Res,2013,23(4):465-72.
    [30] Gratz SJ,Cummings AM,Nguyen JN,et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease[J].Genetics,2013,194(4):1029-1035.
    [31] Friedland AE,Tzur YB,Esvelt KM,et al. Heritable genome editing in C. elegans via a CRISPRCas9 system[J]. Nat Methods,2013,10(8):741-3.
    [32] Tian S,Jiang L,Gao Q,et al. Efficient CRISPR/Cas9-based gene knockout in watermelon[J]. Plant Cell Rep,2017,36(3):399-406.
    [33] Wu M,Wei C,Lian Z,et al. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system[J]. Sci Rep, 2016,6:24360.
    [34] Lv Q,Yuan L,Deng J,et al. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9[J]. Sci Rep,2016,6:25029.
    [35] Kang Y,Zheng B,Shen B,et al. CRISPR/Cas9-mediated Dax1knockout in the monkey recapitulates human AHC-HH[J]. Hum Mol Genet,2015,24(25):7255-64.
    [36] Zindl CL,Chaplin DD. Immunology. Tumor immune evasion[J]. Science,2010,328(5979):697-8.
    [37] Munn DH,Bronte V. Immune suppressive mechanisms in the tumor microenvironment[J]. Curr Opin Immunol,2016,39:1-6.
    [38] Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade:a common denominator approach to cancer therapy[J]. Cancer Cell,2015,27(4):450-61.
    [39] Su S,Zou Z,Chen F,et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer[J]. Oncoimmunol,2016,6(1):e1249558.
    [40] Liao Y,Chen L,Feng Y,et al. Targeting programmed cell death ligand 1 by CRISPR-Cas9 in osteosarcoma cells[J].Oncotarget,2017,8(18):30276-30287.
    [41] Shi L,Meng T,Zhao Z,et al. CRISPR knock out CTLA-4enhances the anti-tumor activity of cytotoxic T lymphocytes[J].Gene,2017,636:36-41.
    [42] Jordan B. First use of CRISPR for gene therapy[J]. Med Sci(Paris),2016,32(11):1035-1037.
    [43] Golubovskaya V. CAR-T cell therapy:from the bench to the bedside[J].Cancers(Basel),2017,9(11). pii:E150.
    [44] Gardner RA,Finney O,Annesley C,et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults[J]. Blood,2017,129(25):3322-3331.
    [45] Turtle CJ,Hanafi LA,Berger C,et al. Immunotherapy of nonHodgkin’s lymphoma with a defined ratio of CD8+and CD4+CD19-specific chimeric antigen receptor-modified T cells[J].Sci Transl Med,2016,8(355):355ra116.
    [46] Morris EC,Stauss HJ. Optimizing T-cell receptor gene therapy for hematologic malignancies[J]. Blood,2016,127(26):3305-11.
    [47] Georgiadis C,Qasim W. Emerging applications of gene edited T cells for the treatment of leukemia[J]. Expert Rev Hematol,2017,10(9):753-755.
    [48] Charpentier E. Doudna J.A. Biotechnology:Rewriting a genome[J].Nature,2013,495(7439):50-1.
    [49] Koonin EV,Makarova KS,Zhang F. Diversity,classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol,2017,37:67-78.
    [50] Yin H,Xue W,Chen S,et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype[J]. Nat Biotechnol,2014,32(6):551-3.
    [51] Yang Y,Wang L,Bell P,et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice[J].Nat Biotechnol,2016,34(3):334-8.
    [52] Song B, Fan Y, He W, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system[J].Stem Cells Dev,2015,24(9):1053-65.
    [53] Flynn R,Grundmann A,Renz P,et al. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human i PS cells[J].Exp Hematol,2015,43(10):838-848.e3.
    [54] Long C,Mc Anally JR,Shelton JM,et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA[J].Science,2014,345(6201):1184-1188.
    [55] Huang X,Wang Y,Yan W,et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient i PSCs after genome editing of the sickle point mutation[J].Stem Cells,2015,33(5):1470-9.
    [56] Chang CW,Lai YS,Westin E,et al. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting[J].Cell Rep,2015,12(10):1668-77.
    [57]马婧,陈炜,张旭,等.多药耐药基因1(Abcb1)敲除和人源化大鼠模型的建立[J].中国比较医学杂志,2015,25(3):1-8.
    [58]赵亚,李红武,师长宏,等.基于CRISPR/Cas9技术构建严重联合免疫缺陷小鼠[J].中国实验动物学报,2016,24(4):55-60.
    [59]马元武,马婧,路迎冬,等.利用CRISPR/Cas9敲除大鼠胰岛素受体底物1(Irs1)基因[J].中国实验动物学报,2014,24(3):55-60.
    [60]李小平,王可品,刘琪帅,等.基因修饰工具猪模型的建立及应用[J].中国实验动物学报,2017,25(3):329-335.
    [61]杨伟莉,涂著池,李晓江. CRISPR/Cas9系统:构建非人灵长类动物疾病模型的新技术[J].中国比较医学杂志,2014,24(8):70-74.
    [62] Blaese RM,Culver KW,Miller AD,et al. T lymphocytedirected gene therapy for ADA-SCID:initial trial results after 4years[J]. Science,1995,270(5235):475-480.
    [63] Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer[J].Mol Genet Me Tab,2003,80(1-2):148-58.
    [64] Scicasts Staff. Hospital uses gene-edited immune cells to treat‘incurable’leukaemia[N]. Scicasts. https://scicasts. com/channels/bio-it/1855-gene-tech/10259-hospital-uses-geneedited-immune-cells-to-treat-incurable-leukaemia/,2015.
    [65] Ihry RJ,Worringer KA,Salick MR,et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells[J]. Nat Med,2018,24(7):939-946.
    [66] Haapaniemi E,Botla S,Persson J,et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nat Med,2018,24(7):927-930.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700