基于矩阵PBM的煤粉超细粉碎过程研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on the ultra-fine grinding of coals based on a matrix population balance model
  • 作者:楚长青 ; 赵冰龙 ; 白雪涛 ; 吴昌宁 ; 翁力 ; 李国涛 ; 刘科
  • 英文作者:CHU Changqing;ZHAO Binglong;BAI Xuetao;WU Changning;WENG Li;LI Guotao;LIU Ke;Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology;School of Innovation and Entrepreneurship,Southern University of Science and Technology;College of Science,Southern University of Science and Technology;
  • 关键词:超细磨 ; PBM模型 ; 超净煤 ; 粒度分布 ; 搅拌磨机
  • 英文关键词:ultra-fine grinding;;PBM model;;ultra-clean coal;;particle size distribution;;stirred ball mill
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:南方科技大学前沿与交叉科学研究院;南方科技大学创新创业学院;南方科技大学理学院;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:广东省引进创新创业团队资助项目(2016ZT06N532);; 广东省深圳市南山区领航团队资助项目(LHTD20160003)
  • 语种:中文;
  • 页:MTXB201906031
  • 页数:9
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:286-294
摘要
建立基于研磨过程机理的煤粉超细研磨动力学模型可以预测超细磨出料的粒度分布和指导优化磨机的研磨效率,降低研磨能耗,对制备低灰分的超净煤具有非常重要的作用。通过田口(Taguchi)正交实验设计,使用实验室1. 5 L立式搅拌磨机考察了不同煤的物性参数、磨介尺寸和煤粉比处理量对于超细研磨的影响,将基于研磨过程特征的动力学模型——矩阵粒群平衡模型(Matrix Population Balance Model,M-PBM)用于煤粉的搅拌磨机超细研磨出料的粒度预测,并结合Rosin-Rammler粒度分布模型,精确地预测出料产品在任意筛下累积含量对应的颗粒粒度。通过极差分析,探讨了煤的灰分、磨介尺寸和煤粉比处理量对于超细研磨能耗和比通量的影响大小,基于对煤粉超细研磨过程中煤-灰解离过程的分析并结合Tomoyoshi的比表面积能耗公式,探讨了煤的灰分与能耗的关系,并进一步建立了煤的灰分、磨介尺寸和煤粉比处理量与磨机研磨比通量和能耗的关系式,研究发现搅拌球磨机湿法超细研磨的粒度变化规律符合一阶线性动力学假设,在定搅拌转轴转速和所考查的研磨粒度变化范围内,煤的灰分对搅拌磨机的比通量和能耗的影响是最大的,建立的研磨能耗和比通量关系式表明在10μm(p50)以下的超细粉磨粒度范围内,煤的研磨能耗随着灰分的提高、磨介尺寸的减小(磨介尺寸在0. 3~1. 8 mm)和比处理量的增大而减小,而比通量随着灰分的提高、磨介尺寸的减小和比处理量的增大而增大。
        The ultra-fine grinding kinetic model for pulverized coal based on the mechanism of grinding process can be used to predict the particle size distribution of the products in the grinding process,provide a guidance for optimizing the mill efficiency,and reduce the process energy consumption. It is very important for the preparation of ultra-clean coal powder with low ash content.In this paper,by using an orthogonal design of Taguchi plan,the effects of the physical parameters of different coals,the size of grinding medium and the specific load of pulverized coal on the ultra-fine grinding process are investigated by using a 1.5 L vertical stirred ball mill in the laboratory. A mechanistic approach based model,matrix population balance model( M-PBM),is proposed to predict the particle size distribution of the ultra-fine grinding products by the stirred ball mill,and by combining the Rosin-Rammler particle size distribution model,the particle size corresponding to any cumulative content under sieve can be accurately predicted.By range analysis,the influences of coal ash content,the size of grinding medium and the specific load of pulverized coal on the energy consumption and specific flux of ultra-fine grinding are discussed. Based on the analysis of coal-ash dissociation process in the ultra-fine grinding of pulverized coal and by combining Tomoyoshi's energy consumption formula relating specific surface area of particles,the relationship between coal ash content and energy consumption is discussed,and the formulas relating coal ash content,grinding medium size,the specific load of pulverized coal with specific grinding flux and with energy consumption are further established.It is found that the particle size reduction during the ultra-fine wet grinding process of stirring ball mill conforms to the first-order linear kinetic hypothesis.Under a fixed rotating speed of agitating shaft and within the considered particle size reduction range,the ash content of coal has the greatest influence on the specific flux and energy consumption of the stirring ball mill.Within the ultrafine grinding size range which is below 10 μm( p50),the established formulas of specific flux and energy consumption show that the increase in ash content,decrease in grinding medium size( 0.3-1.8 mm) and increase in the specific load of pulverized coal will lead to the decrease in energy consumption and increase in specific flux,respectively.
引文
[1]中国电力企业联合会.2016年全国电力工业统计快报数据一览表[DB/OL].www.cec.org.cn,2017-01-13.
    [2]刘科.治霾先治散烧煤和柴油机[N/OL]. www. huanqiu. com,2015-04-18.LIU Ke.Combustion of scattered coal and emissions of diesel engine are the starting points for solving haze problems[N/OL].www.huanqiu.com,2015-04-18.
    [3]王婕.超细粉碎颗粒性质对超净煤分选的影响[D].北京:中国矿业大学(北京),2016.WANG Jie.Effect of ultra-fine particle properties on the separation of ultra-clean coal[D].Beijing:China University of Mining&Technology(Beijing),2016.
    [4]付晓恒,李萍,刘虎,等.煤的超细粉碎与超净煤的分选[J].煤炭学报,2005,30(2):219-223.FU Xiaoheng,LI Ping,LIU Hu,et al.Ultra-fine grinding of coal and preparation of ultra-clean coal[J]. Journal of China Coal Society,2005,30(2):219-223.
    [5] KICK F,GESETZ D.Proportionalen widerstnde und seine anwendungen[M].Leipzig:Felix,1885.
    [6] BOND F C.The third theory of comminution[J].Transactions of the American Institute of Mining and Metallurgical Engineers,1952,193:484-494.
    [7] RITTINGER P R.Lehrbuch a[M].Berlin:Ernst&Korn,1867:47.
    [8] ALLEN T.Powder sampling and particle size determination[M].Amsterdam:Elsevier,2003.
    [9] KING R P.Modeling and simulation of mineral processing systems[M].Oxford:Butterworth-Heinemann,2001.
    [10] STAMBOLIADIS E T.A contribution to the relationship of energy and particle size in the comminution of brittle particulate materials[J].Minerals Engineering,2002,15(10):707-713.
    [11] STAMBOLIADIS E T.The relationship of energy and particle size in comminution[J].Mining and Metallurgical Annals,1996,6(2):9-21.
    [12]杨志远,曲建林,周安宁.超细煤粉颗粒形状分形维数与球磨工艺的研究[J].煤炭学报,2004,29(3):342-345.YANG Zhiyuan,QU Jianlin,ZHOU Anning. Study on the relationships between the profile fractal dimensions of coal ultra-fine powders and their grinding technologies[J].Journal of China Coal Society,2004,29(3):342-345.
    [13]曾凡桂.用粒度表征的煤粉碎动力学方程[J].煤炭学报,2000,25(3):303-306.ZENG Fangui.Coal crushing kinetics equation described by particle size[J].Journal of China Coal Society,2000,25(3):303-306.
    [14] PETRAKIS E,STAMBOLIADIS E T,KOMNITSAS K.Indentification of optimal mill operating parameters during grinding of quartz with the use of population balance model[J]. Kona Powder and Particle Journal,2017,34:213-223.
    [15] PETRAKIS E,KOMNITSAS K.Improved modeling of the grinding process through the combined use of matrix and population balance models[J].Minerals,2017,7(5):67.
    [16] BROADBENT S R,CALLCOTT T G.A matrix analysis of processes involving particle assemblies[J]. Philosophical Transactions of the Royal Society A Mathematical Physical&Engineering Sciences,1956,249(960):99-123.
    [17] RAMKRISHNA D,SINGH M R.Population balance modeling:Current status and future prospects[J]. The Annual Review of Chemical and Biomolecular Engineering,2014,5(8):123-146.
    [18] BILGILI E,SCARLETT B.Population balance modeling of non-linear effects in milling processes[J].Powder Technology,2005,153:59-71.
    [19] NOMURA S,HOSODA K,TANAKA T.An analysis of the selection function for mills using balls as grinding media[J]. Powder Technology,1991,68:1-12.
    [20] GUPTA V K.Determination of the specific breakage rate parameters using the top-size-fraction method:Preparation of the feed charge and design of experiments[J]. Advanced Powder Technology,2016,27:1710-1718.
    [21] PETRAKIS E,STAMBOLIADIS E T,KOMNITSAS K. Evaluation of the relationship between energy input and particle size distribution in comminution with the use of piecewise regression analysis[J].Particulate Science and Technology,2017,35(4):479-489.
    [22]江山,方嵋,殷秋生,等.颗粒粉碎能耗与粒度的关系[J].北京科技大学学报,1996,18(2):112-116.JIANG Shan,FANG Mei,YIN Qiusheng,et al.Relationship between energy consumption and particle size in comminution[J].Journal of University of Science and Technology Beijing,1996,18(2):112-116.
    [23] LI H,NDJAMO A,SAURIOL P,et al. Optimization of Li Fe PO4wet media milling and regressive population balance modeling[J].Advanced Powder Technology,2017,28:1000-1007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700