采用高内相乳液模板法制备葡萄糖基/麦芽糖基大孔材料及其形貌表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Morphology Characterization of Glucose-based/Maltose-based Macroporous Materials by High Internal Phase Emulsion Templating Method
  • 作者:皮茂 ; 张守村 ; 魏杰 ; 李伟达
  • 英文作者:PI Mao;ZHANG Shoucun;WEI Jie;LI Weida;School of Materials Science and Engineering, North Minzu University;
  • 关键词:高内相乳液 ; 大孔材料 ; 麦芽糖 ; 葡萄糖 ; 二氧化碳
  • 英文关键词:high internal phase emulsion;;macroporous materials;;maltose;;glucose;;carbon dioxide
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:北方民族大学材料科学与工程学院;
  • 出版日期:2019-07-18
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(21564001);; 宁夏自然科学基金(NZ15097)~~
  • 语种:中文;
  • 页:CLDB201916032
  • 页数:4
  • CN:16
  • ISSN:50-1078/TB
  • 分类号:177-180
摘要
首先,在氢氧化钾的催化作用下,分别将葡萄糖、麦芽糖与甲基丙烯酸缩水甘油酯反应,得到甲基丙烯酰化的葡萄糖(G-GM)和麦芽糖(M-GM)两种水溶性单体。采用傅里叶变换红外光谱(FT-IR)仪、核磁共振波谱(~1HNMR)仪确定其结构。然后以G-GM/M-GM的水溶液为连续相,二氧化碳为分散相,二丙烯酸聚乙二醇酯(M_W:1 000)为交联剂,制备水包二氧化碳型高内相乳液(内相体积分数大于74.05%),研究了表面活性剂的用量对乳液稳定性的影响。最后以过硫酸钾/四甲基乙二胺为引发剂,引发连续相中的单体聚合,得到大孔材料。实验结果显示,所得高内相乳液具有较好的稳定性,最高能稳定存在48 h以上。扫描电镜(SEM)分析表明,所得大孔材料的孔径分布与所用表面活性剂的浓度存在关系,其平均孔径分布在10~25μm之间,且存在大量的开孔结构,该材料有望在组织工程领域得到应用。
        Glucose/maltose-based monomers(G-GM/M-GM) were synthesized by the reaction of glucose/maltose with glycidyl methacrylate using potassium hydrate as the catalyst. FT-IR,~1H NMR analysis confirmed the corresponding structures. Then the CO_2-in-water high internal emulsions(HIPE, the internal phase fraction is more than 74.05%) were prepared by using G-GM/M-GM solution as the continuous phase, liquid CO_2 as the dispersion phase, PVA-1788 as the surfactant. The results indicated that the HIPEs had sufficient stability, and could keep stable for more than 48 h. After the continuous phase was polymerized by ammonium peroxydisulfate/N,N,N′,N′-tetramethylethylenediamine as the redox initiator system, the G-GM/M-GM-based macroporous materials were obtained. SEM analysis indicated that G-GM/M-GM-based materials had rich cell structure with open-cell morphology, and the average pore sizes were distributed in 10—25 μm. These structures endowed these mate-rials with the potentiality to be used in tissue engineering applications.
引文
1 Guan J,Xu H X,Huang Y F,et al.Acta Chimica Sinica,2010,68(1),89 (in Chinese).管娟,许惠心,黄郁芳,等.化学学报,2010,68(1),89.
    2 Lyu S Y,Shao Z Q,Zhang Z L,et al.Acta Chimica Sinica,2012,70(2),200 (in Chinese).吕少一,邵自强,张振玲,等,化学学报,2012,70(2),200.
    3 Pulko I,Krajnc P.Macromolecular Rapid Communications,2012,33,1731.
    4 Butler R,Hopkinson I,Cooper A I.Journal of American Chemistry Society,2003,125(47),14473.
    5 Boyère C,Léonard A F,Grignard B,et al.Chemistry Communications,2012,48(67),8356.
    6 Chen K P,Grang N,Liang L Y,et al.Macromolecules,2010,43(22),9355.
    7 Lee H,Pack J W,Wang W X,et al.Macromolecules,2010,43(22),2276.
    8 Birkin N A,Arrowsmith N J,Park E J,et al.Polymer Chemistry,2011,2(6),1293
    9 Tan B,Lee J Y,Cooper A I.Macromolecules,2007,40(6),1945.
    10 Li W,Wang L W,Fang S Y,et al.Journal of Applied Polymer Science,DOI:10.1002/APP.46351.
    11 Zhang S C,Luo W,Yan W,et al.Green Chemistry,2014,16(9),4408.
    12 Fan X,Potluri V K,Mcleod M C,et al.Journal of American Chemistry Society,2005,127(3),11754.
    13 Lee J Y,Tan B,Cooper A I.Macromolecules,2007,40(6),1955.
    14 Luo W,Zhang S C,Li P,et al.Polymer,2015,61,183.
    15 Druel L,Bardl R,Vorwerg W,et al.Biomacromolecules,2017,18 (12),4232.
    16 Zhang S C,Sun W,Pi M.Journal of Functional Polymers,2018,31(3),273 (in Chinese).张守村,孙武,皮茂.功能高分子学报,2018,31(3),273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700