用户名: 密码: 验证码:
高空台飞行环境模拟系统数字建模与仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Digital Modeling and Simulation of Altitude Test Facility Flight Environment Simulation System
  • 作者:裴希同 ; 张松 ; 但志宏 ; 朱美印 ; 钱秋朦 ; 王曦
  • 英文作者:PEI Xi-tong;ZHANG Song;DAN Zhi-hong;ZHU Mei-yin;QIAN Qiu-meng;WANG Xi;AECC Sichuan Gas Turbine Establishment;Science and Technology on Altitude Simulation Laboratory,AECC Sichuan Gas Turbine Establishment;School of Energy and Power Engineering,Beihang University;
  • 关键词:高空台 ; 高空模拟试验 ; 数字建模 ; 仿真 ; 控制
  • 英文关键词:Altitude test facility;;Simulated altitude test;;Digital modeling;;Simulation;;Control
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:中国航发四川燃气涡轮研究院;中国航发四川燃气涡轮研究院高空模拟技术重点试验室;北京航空航天大学能源与动力工程学院;
  • 出版日期:2018-11-20 09:01
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.263
  • 基金:高空模拟技术重点实验室基金(SYS-02-2015;SYS-08-2015;SYS-07-2016)
  • 语种:中文;
  • 页:TJJS201905023
  • 页数:9
  • CN:05
  • ISSN:11-1813/V
  • 分类号:190-198
摘要
为了分析新建高空台飞行环境模拟系统试验设备动态控制特性,研究各子系统关联耦合性,开展了系统建模和仿真研究。采用相似理论和部件级建模方法针对进排气关键调节阀、液压伺服系统和管道容腔等进行了数学建模研究,建立了相应设备特性模型,设计了双闭环进排气压力自动控制结构。在对实际控制系统功能性分解基础上,构建了飞行环境模拟系统数字仿真平台,并在数字仿真平台上进行了压力动态控制仿真。仿真结果表明各子系统压力动态建立过程与真实高空模拟试验过程趋势一致,能够反映真实系统的压力动态过程,证明了系统数学模型的合理性。利用仿真方法模拟了发动机流量变化对各控制子系统的影响,稳压腔压力最大偏差为4.5kPa,发动机进气压力最大偏差为3.4kPa,排气压力最大偏差为1.5kPa,验证了飞行环境模拟系统控制性能。
        In order to analyze the dynamic control performance of a newly built altitude test facility flight environment simulation system and study the coupling level of each subsystem,the modeling and simulation of the system were conducted. The characteristics of the inlet valves,exhaust valve,the hydraulic servo system and the pipe-volume were studied by numerical method. Using similar theory and component level modeling method,the mathematical models of the test facilities were established,and the double closed-loop pressure control structure of the flight environment simulation system was designed. Based on the function decomposition of actual system,the digital simulation platform of the flight environment simulation system was established,and pressure dynamic control simulation was carried out in the platform. Simulation results indicate that the pressure dynamic regulating processes were consistent with the actual system and could reflect the pressure dynamic regulating processes of the actual system,the mathematical models of the system were reasonable. To examine the dynamic control performance of the flight environment simulation system,the influence of engine mass flow variation on each subsystem was simulated in the simulation platform,and the maximum pressure deviation of pressure stabilizing cavity,inlet and exhaust of engine was 4.5 kPa,3.4 kPa and 1.5 kPa.
引文
[1]侯敏杰.高空模拟试验技术[M].北京:航空工业出版社,2014.
    [2] Peter A Montgomery,Rick Burdette. Evolution of a Turbine Engine Test Facility to Meet the Test Needs of Future Aircraft Systems[C]. Amsterdam:Proceedings of ASME TURBO EXPO,2002.
    [3] Krupp,Brian E. Heat Transfer Analysis of AEDC Test Cell J-2 Inlet Ducting Using a Lumped-Parameter Mathematical Model[D]. Knoxville:University of Tennessee,1998.
    [4] Peter A Montgomery,Rick Burdette,Brian Krupp. A Real-Time Turbine Engine Facility Model and Simulation for Test Operations Modernization and Integration[R]. ASME 2000-GT-0576.
    [5] Peter A Montgomery,Rick Burdette,Larry Wilhite,et al. Modernization of a Turbine Engine Test Facility Utilizing a Real-Time Facility Model and Simulation[R].ASME 2001-GT-0573.
    [6] Milt Davis,Peter Montgomery. A Flight Simulation Vision for Aeropropulsion Altitude Ground Test Facilities[J]. Transactions of the ASME,2002,127:21-31.
    [7] Bradley M King,Joshua S Frederik. Evaluation of AEDC Concurrent Engine Test Capability[R]. AIAA 2008-1660.
    [8] Doug Garrard,Dusty Vaughn,Alan Milhoan. Checkout Testing of the New Basic Process Control System at the Aerodynamic and Propulsion Test Unit[R]. AIAA 2012-5969.
    [9] Doug Garrard,Alan Milhoan. Upgrades to the Aerodynamic and Propulsion Test Unit Heated Fuel System[R]. AIAA 2014-2766.
    [10] Doug Garrard,Sharon Rigney. Hypersonic Test Capabilities at the Aerodynamic and Propulsion Test Unit[R].AIAA 2015-1784.
    [11] Majid Boraira,David H Van Every. Design and Commissioning of a Multivariable Control System for a Gas Turbine Engine Test Facility[R]. AIAA 2006-3151.
    [12] Klaus-J Schmidt,Ralph Merten,Martin Menrath,et al.Adaption of the Stuttgart University Altitude Test Facility for BR700 Core Demonstrator Engine Tests[R].ASME 98-GT-556.
    [13] Bierkamp J,K?cke S,Prof-Dr-Ing S Staudacher,et al.Influence of ATF Dynamics and Controls on Jet Engine Performance[R]. ASME 2007-GT-27586.
    [14] Weisser M,Bolk S,Staudacher S. Hard-in-the-LoopSimulation of a Feedforward Multivariable Controller for the Altitude Test Facility at the University of Stuttgart[C]. Stuttgart:Deutscher Luft-Und Raumfahrtkongress,2013.
    [15]曹建国.航空发动机仿真技术研究现状、挑战和展望[J].推进技术,2018,39(5):961-968.(CAO Jianguo. Status,Challenges and Perspectives of Aero-Engine Simulation Technology[J]. Journal of Propulsion Technology,2018,39(5):961-968.)
    [16]裴希同,朱美印,张松,等.一种特种流量特性计算的经验公式迭代方法[J].燃气涡轮试验与研究,2016,29(5):35-39.
    [17]朱美印,裴希同,张松,等.一种轮盘式特种调节阀流量特性的修正算法[J].燃气涡轮试验与研究,2016,29(5):40-45.
    [18]朱美印,张松,但志宏,等.一种大口径蝶阀流量特性的坐标定位回归算法[J].燃气涡轮试验与研究,2017,30(4):39-44.
    [19]李洪人.液压控制系统[M].北京:国防工业出版社,1981.
    [20]宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社,2007.
    [21]冯青.工程热力学[M].西安:西北工业大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700