用户名: 密码: 验证码:
基于DFT和UV-Vis的金丝桃苷印迹相互作用分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Imprinting Interaction Analysis of Hyperoside Based on DFT and UV-Vis
  • 作者:刘军 ; 杨鲁伟 ; 张振涛 ; 樊永明 ; 刘永升
  • 英文作者:LIU Jun;YANG Lu-wei;ZHANG Zhen-tao;FAN Yong-ming;LIU Yong-sheng;College of Materials Science and Technology, Beijing Forestry University;Beijing Key Laboratory of Lignocellulosic Chemistry;Technical Institute of Physics and Chemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Science, China University of Petroleum;
  • 关键词:金丝桃苷 ; DFT ; UV-Vis ; 相互作用 ; 分子印迹 ; 中药现代化技术
  • 英文关键词:hyperoside;;DFT;;UV-Vis;;interaction;;molecular imprinting;;modernization technology of traditional Chinese medicines
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:北京林业大学材料科学与技术学院;林木生物质化学北京市重点实验室;中国科学院理化技术研究所;中国科学院大学;中国石油大学理学院;
  • 出版日期:2019-01-23 11:23
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家重点研发计划(2017YFF0207804)~~
  • 语种:中文;
  • 页:JXHG201905014
  • 页数:10
  • CN:05
  • ISSN:21-1203/TQ
  • 分类号:108-117
摘要
为提高金丝桃苷(HYP)印迹效率,通过密度泛函理论(DFT)和紫外-可见光吸收光谱(UV-Vis)实验法对HYP、丙烯酰胺(AM)、衣康酸(IA)及其不同摩尔比例的HYP-AM和HYP-IA复合物进行理论计算和紫外光谱的测定,使用分子静电势(MEP)预测HYP、AM和IA的印迹活性位点,探讨HYP和AM(IA)分子间相互作用的印迹机理。结果表明:HYP中O11可与AM中H9(或H10)以及IA中H2(或H15)形成强氢键作用,而O12—H13、O15—H16、O25—H26、O27—H28、O41—H42、O44—H45、O47—H48、O52—H53可与AM中O7以及IA中O4(或O13)形成强氢键作用。HYP-AM和HYP-IA复合物系统的高摩尔比可以增加复合物的总相互作用能量。通过筛选不同功能单体可以增强活性位点之间的相互作用强度。HYP与AM(IA)之间发生的强氢键作用导致Ⅰ、Ⅱ、Ⅳ吸收峰发生红移,同时验证了DFT理论计算的准确性。HYP-AM和HYP-IA复合物的最优印迹比分别为n(HYP)∶n(AM)=1∶8和n(HYP)∶n(IA)=1∶7,且HYP-IA比HYP-AM的相互作用力更强,IA是更好的功能单体。
        To improve the imprinting efficiency of hyperoside(HYP), the theoretical calculation and UV spectral determination of HYP, acrylamide(AM), itaconic acid(IA), and its different molar ratios of HYP-AM and HYP-IA complexes were carried out by the method of density functional theory(DFT) and the experiment of ultraviolet-visible absorption spectroscopy(UV-Vis). The imprinted active sites of HYP, AM and IA were predicted by using the molecular electrostatic potential(MEP). The imprinting mechanism of the interaction between HYP and AM(IA) molecules was discussed. The results show that O11 of HYP can form strong hydrogen bonds with H9(or H10) of AM, and H2(or H15) of IA. While O12—H13, O15—H16, O25—H26,O27—H28, O41—H42, O44—H45, O47—H48 and O52—H53 can form strong hydrogen bonds with O7 of AM,and O4(or O13) of IA. The high molar ratios of HYP-AM and HYP-IA complexes can increase the total interaction energy of the complex. The strength of the interaction between the active sites can be enhanced by selecting different functional monomers. The strong hydrogen-bond interaction between HYP and AM(IA) leads to partial redshifts of the absorption peak of Ⅰ, Ⅱ and Ⅳ. Moreover, the accuracy of DFT method was verified. The optimal imprinting molar ratios of HYP-AM and HYP-IA complexes were n(HYP)∶n(AM)=1∶8 and n(HYP)∶n(IA)=1∶7, respectively. HYP-IA has stronger interaction with HYP-AM, and IA is a better functional monomer.
引文
[1]Yao Kai(姚开),Jia Dongying(贾冬英),He Qiang(何强),et al.Separation of main monomers from soybean isoflavone by column chromatography[J].Journal of Sichuan University(Engineering Science Edition)[四川大学学报(工程科学版)],2004,36(3):77-80.
    [2]Tang Qiaoyu(唐巧玉),Zhou Yifeng(周毅峰).Extraction processing of total flavonoids from Oenanthe javanica using accelerated solvent extraction method[J].Food Science(食品科学),2010,31(22):190-193.
    [3]Peng Zhibing(彭志兵),Wu Zhengping(吴正平).Analysis of hyperoside in flower of Hibiscus manihot L.by HPLC-mass spectrometry[J].Journal of Anhui Agricultural Sciences(安徽农业科学),2008,36(23):10028-10029.
    [4]Wang Shasha(王沙沙),Liu Yang(刘洋),Niu Zhenzhen(牛真真),et al.Separation and purification of total flavonoids from Salsola collina with macroporous resins and evaluation of antioxidant activities[J].Fine Chemicals(精细化工),2018,35(1):58-64.
    [5]Li J,Zhang J,Wang M.Extraction of flavonoids from the flowers of Abelmoschus manihot(L.)Medic.By modified supercritical CO2extraction and determination of antioxidant and anti-adipogenic activity[J].Molecules,2016,21(7):810[2018-08-22].https://www.mdpi.com/1420-3049/21/7/810.DOI:10.3390/molecules21070810.
    [6]Ansari S,Karimi M.Novel developments and trends of analytical methods for drug analysis in biological and environmental samples by molecularly imprinted polymers[J].Trends in Analytical Chemistry,2017,89:146-162.
    [7]Ahn H,Lee G.Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation[J].Phytomedicine,2017,24:77-86.
    [8]Bejar E,Amarquaye A,Che C,et al.Constituents of Byrsonima crassifolia and their spasmogenic activity[J].Pharmaceutical Biology,1995,33(1):25-32.
    [9]Xiao R,Xiang A,Pang H,et al.Hyperoside protects against hypoxia/reoxygenation induced injury in cardiomyocytes by suppressing the Bnip3 expression[J].Gene,2017,629:86-91.
    [10]Zeng K,Wang X,Ko H,et al.Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloidβ-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway[J].European Journal of Pharmacology,2011,672(1/2/3):45-55.
    [11]Bai Yun(白云),Zhu Ruichao(朱瑞超),Li Jin(李晋),et al.Simultaneous determination of five flavonoids in the flowers of Aurea helianthus by ultra performance liquid chromatography method[J].Tianjin Journal of Traditional Chinese Medicine(天津中医药),2018,35(2):147-150.
    [12]Zhou X,Dong L,Li D.A comprehensive study of extraction of hyperoside from Hypericum perforatum L.using CTAB reverse micelles[J].Journal of Chemical Technology and Biotechnology,2008,83(10):1413-1421.
    [13]Chen Y,Zhang X,Guo Q,et al.Effects of UV-B radiation on the content of bioactive components and the antioxidant activity of Prunella vulgaris L.Spica during development[J].Molecules,2018,23(5),989[2018-08-22].https://www.mdpi.com/1420-3049/23/5/989.DOI:10.3390/molecules23050989.
    [14]Xie J,Zhu L,Luo H,et al.Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin[J].Journal of Chromatography A,2001,934(1):1-11.
    [15]Becke A.Density-functional exchange-energy approximation with correct asymptotic behavior[J].Physical Review A,1988,38(6):3098-3100.
    [16]Becke A.Density-functional thermochemistry.III.The role of exact exchange[J].Journal of Chemical Physics,1993,98(7):5648-5652.
    [17]Lee C,Yang W,Parr R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Physical Review B,1988,37(2):785-789.
    [18]Kose E,Atac A,Bardak F.The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV-Vis,NMR and vibrational spectral techniques combined with molecular docking analysis[J].Journal of Molecular Structure,2018,1163:147-160.
    [19]Avdovic E H,Milenkovic D,Dimitric M J M,et al.Synthesis,spectroscopic characterization(FT-IR,FT-Raman,and NMR),quantum chemical studies and molecular docking of3-(1-(phenylamino)ethylidene)-chroman-2,4-dione[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,195:31-40.
    [20]E?me A,Sa?d?n?S G.Molecular structures,spectroscopic(FT-IR,NMR,UV)studies,NBO analysis and NLO properties for tautomeric forms of 1,3-dimethyl-5-(phenylazo)-6-aminouracil by density functional method[J].Spectrochimica Acta.Part A:Molecular and Biomolecular Spectroscopy,2018,188:443-455.
    [21]Xantheas S S.Ab initio studies of cyclic water clusters(H2O)n,n=1-6.II.Analysis of manybody interactions[J].The Journal of Chemical Physics,1994,100(10):7523-7534.
    [22]Salehzadeh S,Maleki F.New equation for calculating total interaction energy in one noncyclic ABC triad and new insights into cooperativity of noncovalent bonds[J].Journal of Computational Chemistry,2016,37(32):2799-2807.
    [23]Boys S F,Bernardi F.The calculation of small molecular interactions by the differences of separate total energies.Some procedures with reduced errors[J].Molecular Physics,2002,100(1):65-73.
    [24]Shakila G,Saleem H,Sundaraganesan N.FT-IR,FT-Raman,NMRand UV spectral investigation:Computation of vibrational frequency,chemical shifts and electronic structure calculations of 1-bromo-4-nitrobenzene[J].World Scientific News,2017,61(2):150-185.
    [25]Wang Shengxin(王生新),Yang Hairong(杨海荣).Chemical investigation of Rhododendron Dabans-HanenseⅡ.The isolation and identification of(+)-catechin,hyperin and toxicant components[J].Acta Botanica Sinica(植物学报),1981,23(1):47-51.
    [26]Kaur D,Khanna S.Intermolecular hydrogen bonding interactions of furan,isoxazole and oxazole with water[J].Computational and Theoretical Chemistry,2011,963(1):71-75.
    [27]Hao J,Li S,Jiang X,et al.Rapid evaluation of the interaction energies for O-H···O hydrogen-bonded complexes[J].Theoretical Chemistry Accounts,2014,133(8):1-12.
    [28]Zhang Peicheng(张培成).Flavone Chemistry[M].Beijing:Chemical Industry Press(北京:化学工业出版社),2008:239-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700