Ti_(54.7)Ni_(30.7)Cu_(12.3)Co_(2.3)合金形状记忆效应及力学性能的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on SME and mechanical properties of Ti_(54.7)Ni_(30.7)Cu_(12.3)Co_(2.3) shape memory alloy
  • 作者:蒋烨 ; 寇生中 ; 杨慧妮 ; 翟逸玥
  • 英文作者:JIANG Ye;KOU Shengzhong;YANG Huini;ZHAI Yiyue;State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology;
  • 关键词:形状记忆合金 ; 回复率 ; 力学性能 ; 显微硬度
  • 英文关键词:shape memory alloy;;recovery rate;;mechanical properties;;microhardness
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室;
  • 出版日期:2019-03-31
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.426
  • 基金:国家自然科学基金资助项目(51571105)
  • 语种:中文;
  • 页:GNCL201903022
  • 页数:8
  • CN:03
  • ISSN:50-1099/TH
  • 分类号:134-140+147
摘要
采用二辊热冷轧机将Ti_(54.7)Ni_(30.7)Cu_(12.3)Co_(2.3)形状记忆合金试样轧至预定厚度后将其加热到马氏体逆相变结束温度A_f以上200℃进行2 h保温处理,测试每个试样的回复程度,研究表明在预变形量为4%时,该形状记忆合金在此回复温度下保温2 h后具有最大的回复率,回复率达到了88.89%,在预变形量超过4%以后,合金在此回复温度下保温2 h后的回复效果逐渐削弱,这表明该形状记忆合金在200℃的回复温度下保温2 h后的极限预应变量在4%左右,如果预应变量超过这个极限,在此温度下保温2 h后该合金就无法完全回复;经过465℃保温30 min热处理后,Ti_(54.7)Ni_(30.7)Cu_(12.3)Co_(2.3)形状记忆合金具有最高的断裂强度(2 475 MPa)以及较高的屈服强度(1 586 MPa)与塑性应变(13.5%),这表明Ti_(54.7)Ni_(30.7)Cu_(12.3)Co_(2.3)形状记忆合金热在处理温度为465℃时具有最佳的室温压缩性能,且对其硬度值具有最大的提升效果。
        Ti_(54.7)Ni_(30.7)Cu_(12.3)Co_(2.3) shape memory alloy was rolled to predetermined thickness by two-roll hot-cold rolling mill, and conducted insulation treatment at 200 ℃, above the end temperature of martensite inversion, for 2 h. The recovery rates of samples were tested. The results indicate that the shape memory alloy showed the maximum recovery rate of 88.89% at the recovery temperature of 200 ℃ for 2 h when the pre-deformation amount was set as 4%. The recovery effect of the alloy fell off at this recovery temperature for 2 h when the pre-deformation amount was above 4%, which denoted that the shape memory alloy possessed maximum pre-deformation of roughly 4% at the recovery temperature of 200 ℃ for 2 h, and the alloy could not recover completely at this temperature for 2 h when pre-deformation was beyond limit. The shape memory alloy demonstrated maximum breaking strength(2 475 MPa), higher yield strength(1 586 MPa) and plastic strain rate(13.5%) with insulation heat treatment at the temperature of 465 ℃ for 30 min, which manifested the alloy presented optimal room temperature compression performance, and maximum promotion of microhardness with insulation heat treatment at the temperature of 465 ℃ for 30 min.
引文
[1] Huang Bing. Effect of annealing time on microstructure and properties of Ti49Ni51 shape memory alloy[J]. Foundry Technology, 2017(7):1585-1587(in Chinese).黄斌.退火时间对Ti49Ni51形状记忆合金组织与性能的影响[J].铸造技术,2017(7):1585-1587.
    [2] Otsuka K, Wayman C M. Shape memory materials[M]. Cambridge:Cambridge University Press, 1998:58-62.
    [3] Taheri A M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68:224-231.
    [4] Lin H C, Wu S K, Chang Y C. Damping characteristics of TiNi shape memory alloys[J]. Ecomaterials, 1993, 24(10):2189-2194.
    [5] Humbeeck J V. Damping capacity of thermoelastic martensite in shape memory alloys[J]. Journal of Alloys & Compounds, 2003,355(1):58-64.
    [6] Liu R, Li D Y.Experimental studies on tribological properties of pseudoelastic TiNi alloy with comparison to stainless steel 304[ J] .Metallurgical and Materials TransactionsA , 2000 , 31(11):2773-2783.
    [7] Sinha A, Mondal B, Chattopadhyay P P. Mechanical properties of Ti-(~ 49at%) Ni shape memory alloy, part II: effect of ageing treatment[J]. Materials Science & Engineering A Structural Materials Properties Microstructure & Processing, 2013, 561: 344-351.
    [8] Wu Qiong, Yang Shuyuan, Zhang Xiao, et al. Hot deformation behavior of TiNiCr shape memory alloy[J]. Rare Metal Material and Engineering, 2016(6):1631-1635(in Chinese).吴琼,杨素媛,张晓,等.TiNiCr形状记忆合金热压缩变形行为研究[J].稀有金属材料与工程, 2016(6):1631-1635.
    [9] Chang S H, Huang J J. Biodegradability and anticoagulant properties of chitosan and sulfonated chitosan films coated on TiNi alloys[J]. Surface & Coatings Technology, 2012, 206(23):4959-4963.
    [10] Cui B, Yao J, Wu Y, et al. Precipitation behavior and mechanical properties of Ti-Ni-Nb-Co alloys[J]. Intermetallics, 2018, 95:40-47.
    [11] Qiu X M, Li M G, Sun D Q, et al. Study on brazing of TiNi shape memory alloy with stainless steels[J]. Journal of Materials Processing Tech, 2006, 176(1):8-12.
    [12] Liu J, Hu D, Zheng X, et al. Effect of precipitation phase morphology on mechanical properties of Ni-Ti shape memory alloy[J]. Rare Metal Materials & Engineering, 2013, 42(5):942-946.
    [13] Liang Chenghao, Guo Liang, Guo Haixia, et al. Behaviors of corrosion on biomaterial of TiNi based shape memory alloys in saline solution[J]. Rare Metal Material and Engineering, 2005, 34(1):135-138(in Chinese).梁成浩,郭亮,郭海霞,等.生理盐水中TiNi基形状记忆合金耐蚀机理研究[J].大连理工大学学报,2005,34(1):135-138.
    [14] Hong S H, Kim J T, Park H J, et al. Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys[J]. Journal of Alloys & Compounds, 2016, 692:77-85.
    15] Li J, Yi X, Sun K, et al. The effect of Zr on the transformation behaviors, microstructure and the mechanical properties of Ti-Ni-Cu shape memory alloys[J]. Journal of Alloys & Compounds, 2018, 747:348-353.
    [16] Zhao Y, Zhao Z, Ma W, et al. Effects of Cu content on microstructures and mechanical properties of Ti-Ni-based amorphous composites[J]. Rare Metal Materials & Engineering, 2017, 46(8):2114-2118.
    [17] Kim Y N, Hwang S K, Joo H S, et al. Effect of heat treatment and mandrel material on precision tube drawing of Ni-Ti shape memory alloy[J]. Procedia Engineering, 2017, 207:1517-1522.
    [18] Sun Xiaogang, Tao Yourui, Wu Anru, et al. Effect of vacuum heat treatment on martenstic phase transformation Ni-Mn-Ga shape memory alloy[J]. Journal of Hunan Institute of Engineering, 2016, 26(4):31-33(in Chinese).孙小刚,陶友瑞,吴安如,等.真空热处理对Ni-Mn-Ga形状记忆合金马氏体相变的影响研究[J].湖南工程学院学报(自科版),2016,26(4):31-33.
    [19] Zhao Y, Ma W, Zhao Z, et al. Effects of pre-deformation annealing on mechanical properties of Ti-based amorphous alloys[J]. Rare Metal Materials & Engineering, 2017, 46(9):2366-2370.
    [20] Liu Kankai, He Zhirong, Wu Peize, et al. Research progress of characteristics of Ti-Ni based shape memory alloys and their influencing factors[J]. Foundry Technology, 2017(7):1535-1539(in Chinese).刘康凯,贺志荣,吴佩泽,等.Ti-Ni基形状记忆合金的特性及其影响因素研究进展[J].铸造技术,2017(7):1535-1539.
    [21] Kim Y J, Lee C H, Kim J H, et al. Numerical modeling of shape memory alloy plates considering tension/compression asymmetry and its verification under pure bending[J]. International Journal of Solids & Structures, 2017,136-137.
    [22] Xu Jiujun, Yan Li, Yu Zhiwei, et al. Indeterminate(uncertain) hardness of SMA[J]. Journal of Functional Materials, 2001, 32(3):264-265(in Chinese).徐久军,严立,于志伟,等. NiTi形状记忆合金硬度的不唯一性[J].功能材料, 2001, 32(3):264-265.
    [23] Gu J S, Wei B C, Zhang T H, et al. Serrated flow and shear band evolution in a Zr-based bulk metallic glass after plastic deformation and annealing[J]. Journal of Alloys & Compounds, 2010, 504(16):S65-S68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700