核壳型稀土上转换纳米材料及其生物医学应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Core-Shell Structured Rare Earth Upconversion Nanoparticles and Their Biomedical Applications
  • 作者:冯爱玲 ; 徐榕 ; 王彦妮 ; 张亚妮 ; 林社宝
  • 英文作者:FENG Ailing;XU Rong;WANG Yanni;ZHANG Yani;LIN Shebao;School of Physics and Optoelectronics Technology,Baoji University of Arts & Science;
  • 关键词:核壳结构 ; 稀土上转换发光 ; 纳米粒子 ; 生物成像 ; 疾病治疗
  • 英文关键词:core-shell structure;;rare earth;;upconversion luminescence;;nanoparticles;;bioimaging;;disease treatment
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:宝鸡文理学院物理与光电技术学院;
  • 出版日期:2019-06-27
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:陕西省自然科学基础研究计划(2015JM5215);; 中国博士后科学基金面上项目(2016M601878);; 宝鸡市科技计划项目(16RKX1-29);; 宝鸡市科技攻关项目(14GYGG-5-1)~~
  • 语种:中文;
  • 页:CLDB201913020
  • 页数:8
  • CN:13
  • ISSN:50-1078/TB
  • 分类号:149-156
摘要
稀土上转换纳米材料因具有能将近红外光转化为可见光的光学性质,在显示、探测尤其是生物医学等领域有着广泛的应用。但由于上转换发光机制的局限性以及稀土离子的电子跃迁特性,稀土上转换纳米材料的荧光量子产率很低,这极大地限制了该材料的发展。因此,寻找可以有效提高稀土上转换纳米材料发光效率的方法尤为重要。通过制备核壳型稀土上转换纳米材料,可以抑制稀土上转换材料的表面猝灭、钝化内核表面的晶格缺陷、隔离外界不利因素的干扰,从而大幅提高材料的上转换效率。同时可赋予材料一系列优异的性能。,例如:表面包覆单层壳层可以改变材料表面的亲水性,而包覆多层壳层能使上转换材料集诊疗功能于一体。本文从稀土离子以及上转换发光方式的特点入手,分析了稀土上转换纳米材料的缺陷,阐述了几种较为常用的稀土上转换纳米材料制备方法的优缺点,重点介绍了几种近年来研究较为广泛的核壳结构,包括惰性核壳结构、活性核壳结构和多层核壳结构。分别对这三类核壳结构材料的结构特点和应用现状进行总结,并探讨了它们对稀土上转换纳米材料起到的作用。指出惰性壳层对稀土上转换纳米材料的主要作用是隔离外界环境干扰以及降低材料表面活性,活性壳层可通过在外壳中掺杂不同的离子来引入新的功能。在稀土上转换纳米材料表面包覆多层壳层,一方面能够有效防止离子跃迁减少荧光猝灭;另一方面通过制备多层壳层可以充分利用稀土材料以及各种治疗方式的优点,为制备诊疗一体化纳米治疗平台提供新的思路。最后综述了核壳型稀土上转换纳米材料在深层组织成像、多模式成像、药物传输、光热疗法和光动力疗法方面取得的研究进展,提出核壳型稀土上转换纳米材料在发展过程中存在外壳与内核的结合强度不易控制、最佳外壳包覆厚度尚未明确以及材料还未工业化等问题,展望了今后的研究重点应放在深入探索核壳结构的作用机理上,从原理出发找到更加高效的壳层制备手段,进一步拓展核壳型稀土上转换纳米材料在生物医学领域的应用。
        Rare earth upconversion nanoparticles have attracted considerable attention in the fields of display,detection,especially biomedicine because they can convert near infrared light into visible light. However,due to the limitation of upconversion luminescence mechanism and the electron transition characteristics of rare earth ions,the fluorescence quantum yield of rare earth upconversion nanoparticles is very low,which greatly limits theirs development. Therefore,it is very important to improve the luminescence efficiency of rare earth upconversion nanoparticles. Coating shell layer on rare earth upconversion nanoparticles by preparing core-shell structured materials can inhibit the surface quenching of rare earth materials,passivate lattice defects of the inner-core surface,isolate the interference of external adverse factors,which greatly improve the efficiency of transformation on the luminescence. Meanwhile,it can bring a series of excellent performance. For example,coating single-layer shell can change the material surface hydrophobicity; coating multilayer shells can prepare multifunctional nanocomposites with diagnostic and therapeutic function.Based onthe characteristics of rare earth ions and upconversion luminescence,the defects of rare earth upconversion nanoparticles were analyzed. This paper also focused on the advantages and disadvantages of several kinds of the preparation methods of core-shell structured nanomaterials which were widely studied in recent years,including inert core-shell structure,active core-shell structure and multilayer core-shell structure.The structural characteristics and application status of three types of core-shell structures were summarized. And their effects of core-shell structure on the luminescence of upconversion nanoparticles were discussed. We pointed out that the main effects of the inert shell on the fluorescence of the rare earth upconversion nanoparticles,including isolating the external environment interference and reducing the surface activity of the materials. Coating active shell on the surface can introduce new functions by doping different ions in the shell. Multi-layer shell can not only effectively prevent ion transition and reduce fluorescence quenching,but also provide new ideas for the preparation of integrated nanometer treatment platform for diagnosis and treatment by making full use of the advantages of rare earth materials and various treatment methods. Finally,we reviewed the applications of rare earth upconversion nanoparticles with core-shell-structure in deep tissue imaging,multi-mode imaging,drug delivery,photothermal therapy and photodynamic therapy. And we also pointed out the existing problems in development of core-shell-structured materials. For example,the bonding strength between shell and core was not easy to control; the optimum shell coating thickness was not uncertain; and the materials were not still industrialized. In the future,the emphasis should be put on exploring the mechanism of core-shell structure and seeking for more efficient methods of shell preparation based on the principles,in order to further expand the application of core-shell structured rare earth upconversion nanomaterials in biomedical fields.
引文
1 Auzel F.Chemical Reviews,2004,104(1),139.
    2 Ma W J,You F T,Peng H S,et al.Journal of Physics,2017,66(10),307 (in Chinese).马文君,由芳田,彭洪尚,等.物理学报,2017,66(10),307.
    3 Feng A L,You M L,Tian L M,et al.Scientific Reports,2015,5(10),7779.
    4 Sun R J,Qiu P Y,Zhang C L,et al.CIESC Journal,2014 (7),2620 (in Chinese).孙容瑾,邱培宇,张春雷,等.化工学报,2014 (7),2620.
    5 Binnemans K.Chemical Reviews,2009,109(9),4283.
    6 Benelle C,Gatteschi D.Chemical Reviews,2002,102(6),2369.
    7 Wu F.The luminescence dynamics in lanthanide doped upconversion core/shell nanoparticles.Doctoral thesis,Changchun Institute of Optics,Fine Mechanics and Physics Chinese Academy of Science,China,2015 (in Chinese).吴飞.核壳结构的纳米稀土上转换荧光材料发光动力学研究.博士学位论文,中国科学院研究生院(长春光学精密机械与物理研究所),2015.
    8 Soukka T,Rantanen T,Kuningas K.Annals of the New York Academy of Sciences,2008,1130(1),188.
    9 Dong H,Su L D,Yan C H.Chemical Society Reviews,2015,44(6),1608.
    10 Stouwdam J W,Van Veggel F.Nano Letters,2002,2(7),733.
    11 Yi G S,Chow G M.Journal of Materials Chemistry,2005,15(41),4460.
    12 Yi G S,Chow G M.Advanced Functional Materials,2006,16(18),2324.
    13 Mai H X,Zhang Y W,Si R,et al.Journal of the American Chemical Society,2006,128(19),6426.
    14 Liu C,Wang H,Li X,et al.Journal of Materials Chemistry,2009,19(21),3546.
    15 Wang F,Chatterjee D K,Li Z Q,et al.Nanotechnology,2006,17(23),5786.
    16 Liu Y X,Pisarski W A,Zeng S J,et al.Optics Express,2009,17(11),9089.
    17 Wang F,Banerjee D,Liu Y S,et al.Analyst,2010,135(8),1839.
    18 Weissleder R.Nature Biotechnology,2001,19(4),316.
    19 Chen G Y,Ohulchanskyy T Y,Liu S,et al.ACS Nano,2012,6(4),2969.
    20 Ntziachristos V,Ripoll J,Wang L H V,et al.Nature Biotechnology,2005,23(3),313.
    21 Feng A L,Lin M,Tian L M,et al.Rsc Advances,2015,5(94),76825.
    22 Chen G Y,Qiu H L,Prasad P N,et al.Chemical Reviews,2014,114(10),5161.
    23 Boyer J C,Van Veggel F.Nanoscale,2010,2(8),1417.
    24 Kompe K,Borchert H,Storz J,et al.Angewandte Chemie-International Edition,2003,42(44),5513.
    25 Yi G S,Chow G M.Chemistry of Materials,2007,19(3),341.
    26 Chen M L,Ma Y,Li M Y.Materials Letters,2014,114,80.
    27 Chen G Y,Agren H,Ohulchanskyy T Y,et al.Chemical Society Reviews,2015,44(6),1680.
    28 Huang P,Zheng W,Zhou S,et al.Angewandte Chemie-International Edition,2014,53(5),1252.
    29 Li Z,Zhang Y,Shuter B,et al.Langmuir,2009,25(20),12015.
    30 Yu S X,Wang Z Q,Cao R J,et al.Journal of Fluorine Chemistry,2017,200,77.
    31 Peng Y Q,Li Z H,Liu Z E,et al.Scientia Sinica(Chimica) ,2015,45(11),1159 (in Chinese).彭叶青,李志豪,刘子恩,等.中国科学:化学,2015,45(11),1159.
    32 Cheng L,Yang K,Li Y G,et al.Angewandte Chemie-International Edition,2011,50(32),7385.
    33 Du Y P,Sun X,Zhang Y W,et al.Crystal Growth & Design,2009,9(4),2013.
    34 Schafer H,Ptacek P,Zerzouf O,et al.Advanced Functional Materials,2008,18(19),2913.
    35 Yi G S,Peng Y F,Gao Z Q.Chemistry of Materials,2011,23(11),2729.
    36 Ouyang J,Yin D G,Cao X Z,et al.Dalton Transactions,2014,43(37),14001.
    37 Stecher J T,Rohlfing A B,Therine M J.Nanomaterials,2014,4(1),69.
    38 Wong H T,Vetrone F,Naccache R,et al.Journal of Materials Chemistry,2011,21(41),16589.
    39 Zhang F,Chen R C,Li X M,et al.Nano Letters,2012,12(6),2852.
    40 Wang Y F,Sun L D,Xiao J W,et al.Chemistry-A European Journal,2012,18(18),5558.
    41 Ghosh P,Oliva J,De La Rose E,et al.Journal of Physical Chemistry C,2008,112(26),9650.
    42 Guo H,Li Z Q,Qian H S,et al.Nanotechnology,2010,21(12),6.
    43 Chen F,Zhang S J,Bu W B,et al.Chemistry-A European Journal,2012,18(23),7082.
    44 Wang C,Xu L G,Xu J T,et al.Dalton Transactions,2017,46(36),12147.
    45 Qiu H L,Yang C H,Shao W,et al.Nanomaterials,2014,4(1),55.
    46 Qiao X F,Zhou J C,Xiao J W,et al.Nanoscale,2012,4(15),4611.
    47 Song L Z,Zhao N,Xu F J.Advanced Functional Materials,2017,27(32),10.
    48 Robinson J T,Hong G S,Liang Y Y,et al.Journal of the American Chemical Society,2012,134(25),10664.
    49 Fukumura D A I,Duda D G,Munn L L,et al.Microcirculation,2010,17(3),206.
    50 Chen G Y,Shen J,Ohulchanskyy T Y,et al.ACS Nano,2012,6(9),8280.
    51 Zhong Y T,Tian G,Gu Z J,et al.Advanced Materials,2014,26(18),2831.
    52 Shankar L K,Menkens A,Sullivan D C.Molecular Imaging in Oncology,Humana Press,US,2008.
    53 Xia A,Gao Y,Zhou J,et al.Biomaterials,2011,32(29),7200.
    54 Zhu X J,Zhou J,Chen M,et al.Biomaterials,2012,33(18),4618.
    55 Sun Y,Zhu X J,Peng J J,et al.ACS Nano,2013,7(12),11290.
    56 Zhang F,Braun G B,Pallaoro A,et al.Nano Letters,2012,12(1),61.
    57 Kang X J,Cheng Z Y,Li C X,et al.Journal of Physical Chemistry C,2011,115(32),15801.
    58 Cheng L,Yang K,Li Y G,et al.Biomaterials,2012,33(7),2215.
    59 Dong B A,Xu S,Sun J A,et al.Journal of Materials Chemistry,2011,21(17),6193.
    60 Kalka K,Merk H,Mukhtar H.Journal of the American Academy of Dermatology,2000,42(3),389.
    61 Brown S B,Brown E A,Walker I.Lancet Oncology,2004,5(8),497.
    62 Konan Y N,Gurny R,All Mann E.Journal of Photochemistry & Photo-biology,B:Biology,2002,66(2),89.
    63 Wang C,Tao H Q,Cheng L,et al.Biomaterials,2011,32(26),6145.
    64 Idris N M,Gnanasammandhan M K,Zhang J,et al.Nature Medicine,2012,18(10),1580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700