液压挖掘机挖掘动力学建模研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Digging dynamic modeling for hydraulic excavators
  • 作者:冯豪 ; 杜群贵 ; 于树栋
  • 英文作者:FENG Hao;DU Qungui;YU Shudong;School of Mechanical and Automotive Engineering, South China University of Technology;Research Institute, Guangxi Liugong Machinery Co., Ltd.;Department of Mechanical and Industrial Engineering, Ryerson University;
  • 关键词:挖掘机 ; 动力学建模 ; 动态载荷 ; 油缸模型 ; 有限元
  • 英文关键词:excavator;;dynamic modeling;;dynamic loads;;hydro-cylinder model;;finite element
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:华南理工大学机械与汽车工程学院;广西柳工机械股份有限公司研究总院;瑞尔逊大学机械与工业工程系;
  • 出版日期:2019-07-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.345
  • 基金:广西科学研究与技术开发项目(桂科攻1598007-46)
  • 语种:中文;
  • 页:ZDCJ201913035
  • 页数:7
  • CN:13
  • ISSN:31-1316/TU
  • 分类号:250-256
摘要
很多因素如油缸动态特性、结构弹性、作业对象等对挖掘机动力学有着重要影响,为解决挖掘动载荷计算问题,综合考虑结构弹性、油缸特性、作业对象等因素提出挖掘机挖掘动力学系统模型。为取得精度和效率权衡,将动臂、斗杆、连杆等结构简化为梁单元;对形状复杂的铲斗结构,采用子结构自由度凝聚法对形状复杂的铲斗简化建模;采用弹簧阻尼单元模拟铲斗与作业对象关系模型;将油缸等效为两节点单元,该单元包含压力、位移和速度等变量;然后将结构与油缸模型组装成整体的动力学模型,采用Newmark算法完成动力计算;以某50 t挖掘机动臂提升冲击工况为案例计算及试验分析,动力计算得到的动载荷与试验测试结果吻合,动载荷峰值误差小于6%,证明方法和模型的正确性。分析结果表明:采用油缸动力学模型比采用位移驱动模型模拟油缸用于动力计算的准确度提升约5倍,而结构弹性对挖掘动载荷的影响较小。
        Many factors, such as, dynamic characteristics of hydro-cylinder, structural flexibility, excavating objects and excavator-soil interaction affect digging dynamic behavior of hydraulic excavators during their operation. Here, to solve digging dynamic load calculation problems, an excavator's digging dynamic model comprehensively considering factors mentioned above was proposed. To achieve a good balance between accuracy and efficiency, all slender structures including movable arms, bucket rods and connecting rods were simplified as beam elements. Complex shape structures like bucket, etc. were simply modeled using the sub-structure DOF condensation method. The bucket-excavating object relation was modeled as a spring-damper element. Hydro-cylinders were modeled as two-node elements containing variables of pressure, displacement and velocity, etc. Then, all structural elements and hydro-cylinder elements were assembled to form a global finite element system model, and perform dynamic computation using Newmark algorithm. Finally, a 50 t excavator's movable arm lifting under impact condition was taken as a case study to do computation and test analysis. The results showed that the computed dynamic loads agree well with measured ones in tests, the error of dynamic load peak values is less than 6%, these verify the correctness of the proposed method and model; compared with using the displacement driven model to simulate hydro-cylinder in dynamic computation, the accuracy of applying the proposed hydro-cylinder model in dynamic computation is increased by 5 times, while structural flexibility has a smaller effect on digging dynamic load.
引文
[1]BOSNJAK S M,PETKOVICZ D,ATANASOVSKA I D,et al.Bucket chain excavator:Failure analysis and redesign of the counterweight boom supporting truss columns[J].Engineering Failure Analysis,2013,32(32):322-333.
    [2]TOWAREK Z.Dynamics of a single-bucket excavator on a deformable soil foundation during the digging of ground[J].International Journal of Mechanical Sciences,2003,45(6/7):1053-1076.
    [3]FOX B,JENNINGS L S,ZOMAYA A Y.On the modelling of actuator dynamics and the computation of prescribed trajectories[J].Computers&Structures,2002,80(7):605-614.
    [4]CIRESI,NANI V M.Stability control for a huge excavator for surface excavation[J].Applied Mathematical Modelling,2016,40(1):388-397.
    [5]TATSUYA Yoshida,TAKAYUKI Koizumi,NOBUTAKATsujiuchi,et al.Dynamic analysis of an excavator during digging operation[J].SAE International Journal of Commercial Vehicles,2013,6(2):419-428.
    [6]徐向红.基于ADAMS的液压挖掘机仿真与优化分析[J].机床与液压,2016,44(11):149-151.XU Xianghong.Simulation and optimization analysis of hydraulic excavator based on ADAMS[J].Machine Tool&Hydraulics,2016,44(11):149-151.
    [7]FRIMPONG S,LI Y.Stress loading of the cable shovel boom under in-situ digging conditions[J].Engineering Failure Analysis,2007,14(4):702-715.
    [8]LI Y,LIU W.Dynamic dragline modeling for operation performance simulation and fatigue life prediction[J].Engineering Failure Analysis,2013,34(6):93-101.
    [9]王相兵,童水光.基于刚柔耦合的液压挖掘机机械臂非线性动力学研究[J].振动与冲击,2014,33(1):63-70.WANG Xiangbing,TONG Shuiguang.Nonlinear dynamical behavior analysis on rigid-flexible coupling mechanical arm of hydraulic excavator[J].Journal of Vibration and Shock,2014,33(1):63-70.
    [10]李发宗,童水光,王相兵,等.船用挖掘机机械臂刚柔耦合动力学及特性研究[J].振动与冲击,2014,33(20):157-163.LI Fazong,TONG Shuiguang,WANG Xiangbing,et al.Rigid-flexible coupling dynamics and characteristics of marine excavator’s mechanical arm[J].Journal of Vibration and Shock,2014,33(20):157-163.
    [11]谢琴,吴运新.液压挖掘机刚柔耦合动力学分析[J].机械传动,2016(5):101-104.XIE Qin,WU Yunxin.Rigid-flexible coupling dynamics analysis of hydraulic excavator[J].Journal of Mechanical Transmission,2016,40(5):101-104.
    [12]罗士淼,戴凤强.大型挖掘机工作装置刚柔耦合运动性能分析[J].农业装备与车辆工程,2017,55(10):84-87.LUO Shimiao,DAI Fengqiang.Rigid-flexible coupling dynamics performance analysis of large excavator working device[J].Agricultural Equipment&Vehicle Engineering,2017,55(10):84-87.
    [13]黄鸣辉,黄冠雅,孙中林,等.考虑作业动态特性的挖掘机工装结构强度分析[J].中国工程机械学报,2017(5):426-429.HUANG Minghui,HUANG Guanya,SUN Zhonglin,et al.Structure strength analysis of working device of hydraulic excavator considering dynamic working characteristics[J].Chinese Journal of Construction Machinery,2017(5):426-429.
    [14]刘静,潘双夏,冯培恩.基于ADAMS的挖掘机液压系统仿真技术[J].农业机械学报,2005,36(10):109-112.LIU Jing,PAN Shuangxia,FENG Pei’en.Study on simulation technology of excavator hydraulic system based on ADAMS[J].Transactions of the Chinese Society for Agricultural Machinery,2005,36(10):109-112.
    [15]何清华,张大庆,郝鹏,等.液压挖掘机工作装置仿真研究[J].系统仿真学报,2006,18(3):735-738.HE Qinghua,ZHANG Daqing,HAO Peng,et al.Study on motion simulation of hydraulic excavator’s manipulator[J].Journal of System Simulation,2006,18(3):735-738.
    [16]朱小晶,权龙,王新中,等.大型液压挖掘机工作特性联合仿真研究[J].农业机械学报,2011,42(4):27-32.ZHU Xiaojing,QUAN Long,WANG Xinzhong,et al.Cosimulation analysis of working characteristic for large hydraulic excavator[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(4):27-32.
    [17]严世榕,黄德银.挖掘机机液工作系统的动态特性仿真分析[J].中国工程机械学报,2015,13(1):58-62.YAN Shirong,HUANG Deyin.Simulation analysis on dynamic properties for excavator hydro-mechanical working system[J].Chinese Journal of Construction Machinery,2015,13(1):58-62.
    [18]洪震,郑庭,贺元成.大型矿用液压挖掘机动臂系统仿真与实验研究[J].机床与液压,2017,45(3):168-171.HONG Zhen,ZHENG Ting,HE Yuancheng.Simulation and experimental research on boom system of large-scale mining hydraulic excavator[J].Machine Tool&Hydraulics,2017,45(3):168-171.
    [19]霍亚东.大型正铲液压挖掘机工作装置机液联合仿真及优化[D].秦皇岛:燕山大学,2017.
    [20]张卫国,权龙,程珩,等.基于真实载荷的挖掘机工作装置瞬态动力学分析[J].机械工程学报,2011,47(12):144-149.ZHANG Weiguo,QUAN Long,CHENG Hang,et al.Transient dynamic analysis on working device of excavator based on practical load[J].Journal of Mechanical Engineering,2011,47(12):144-149.
    [21]BROOKER D C.Numerical modelling of pipeline puncture under excavator loading.Part I.Development and validation of a finite element material failure model for puncture simulation[J].International Journal of Pressure Vessels&Piping,2003,80(10):715-725.
    [22]姚安林,徐涛龙,李星,等.基于试验和数值模拟确定挖掘机具作用下埋地输气管道的动载荷[J].振动与冲击,2014,33(17):39-46.YAO Anlin,XU Taolong,LI Xing,et al.Determining dynamic load on a buried gas pipeline under mining machinery actions based on test and numerical simulation[J].Journal of Vibration and Shock,2014,33(17):39-46.
    [23]徐涛龙,姚安林,李又绿,等.基于全尺寸试验的挖掘机具作用埋地输气管道的多体动力学仿真[J].工程力学,2017,34(增刊2):300-307XU Taolong,YAO Anlin,LI Youlu,et al.Multibody dynamic simulation of buried gas pipeline based on full scale test[J].Engineering Mechanics,2017,34(Sup2):300-307.
    [24]NAYA M,CUADRADO J,DOPICO D,et al.An efficient unified method for the combined simulation of multibody and hydraulic dynamics:comparison with simplified and cointegration approaches[J].Archive of Mechanical Engineering,2011,58(2):223-243.
    [25]YLINEN A,MARJAMKI H,MKINEN J.A hydraulic cylinder model for multibody simulations[J].Computers&Structures,2014,138:62-72.
    [26]廖伯瑜.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004.
    [27]FENG H,DU Q,HUANG Y,et al.Modeling study on stiffness characteristics of hydraulic cylinder under multifactors[J].Journal of Mechanical Engineering,2017,63(7/8):447-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700