玉米穗茎兼收割台夹持输送装置参数优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Parameters Optimization for Gripping and Delivering Device of Corn Harvester for Reaping both Corn Stalk and Spike
  • 作者:张宗玲 ; 韩增德 ; 刘立晶 ; 李晓栋 ; 郝付平 ; 董哲
  • 英文作者:ZHANG Zongling;HAN Zengde;LIU Lijing;LI Xiaodong;HAO Fuping;DONG Zhe;College of Engineering,China Agricultural University;Chinese Academy of Agricultural Mechanization Sciences;Modern Agricultural Equipment Co.,Ltd.;Beijing Beiqi Mould & Plastic Technology Co.,Ltd.;
  • 关键词:玉米收获机 ; 穗茎兼收 ; 夹持输送装置 ; 参数优化 ; 高速摄像 ; 田间试验
  • 英文关键词:corn harvester;;reaping stalk and spike;;gripping and delivering device;;parameter optimization;;high speed camera;;field test
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:中国农业大学工学院;中国农业机械化科学研究院;现代农装科技股份有限公司;北京北汽模塑科技有限公司;
  • 出版日期:2018-03-25
  • 出版单位:农业机械学报
  • 年:2018
  • 期:v.49
  • 基金:国家重点研发计划项目(2016YFD0701904)
  • 语种:中文;
  • 页:NYJX201803013
  • 页数:8
  • CN:03
  • ISSN:11-1964/S
  • 分类号:121-128
摘要
为探明玉米穗茎兼收割台夹持输送装置参数对作物损失率、割台性能的影响机理,设计了一种玉米穗茎兼收割台。通过对夹持输送装置的工作原理、工作条件及影响因素的分析,确定以夹持输送链夹角、输入轴链轮速度、割刀安装位置及机器作业速度为试验因素,以果穗损失率、植株在x轴及y轴的最大偏移量为试验指标,根据Box-Benhnken Design中心组合试验设计原理,进行了四因素三水平正交旋转组合田间试验,试验中利用高速摄像系统记录玉米植株姿态,利用Pro Analyst运动分析软件分析玉米植株的最大偏移量,利用Design-Expert软件对试验结果进行响应面分析,得到各因变量与自变量间的数学模型。试验结果表明:4个自变量与果穗损失率、x轴最大偏移量有二次非线性关系,其中割刀安装位置影响最大,夹持输送链夹角的影响最小,4个因素对y轴最大偏移量无显著影响;因素的交互项仅对果穗损失率有显著影响;最优参数组合为:夹持输送链夹角19.96°、输入轴链轮齿数22.09、割刀安装位置22.33 mm、机器作业速度1.31 m/s,此时果穗损失率为0.4%,x轴最大偏移量为24 mm。对最优参数组合圆整后,取夹持输送链夹角为20°,割刀安装位置为22 mm,机器作业速度为1.30 m/s进行田间验证试验,验证试验表明回归模型有很好的可靠性。优化后的果穗损失率较优化前降低2.4个百分点,低于标准规定的指标值。
        In order to study the influence discipline of parameters of gripping and delivering device( GDD) for corn harvester for reaping both corn stalk and spike in the cramping-cutting-transporting type on corn harvesting performance,the working principle of GDD was analyzed. Box-Benhnken design( BBD) response surface method was used to design the field experiments. An orthogonal rotary combination experiment was conducted with the angle of gripping chain,the teeth number of sprockets in enter shaft,the horizontal distances between reciprocating cutter and the nip point of gripping chains and the working speed of corn harvester as four independent factors,as well as loss rate of corncobs,maximum offset of x axis and y axis as three dependent indices,while using Zhengdan corn as the test materials. The height of 1. 2 m in corn straw was signed by colorful paper tape. And high speed cameras were utilized to record the motion of mark point. Pro Analyst motion analysis software was applied to get the maximum offset of x axis and y axis. Design-Expert software was employed to analyze the test results,mathematical equations between independent and dependent factors were gained. The results indicated that four independent variables had a second nonlinear relationship with loss rate of corncobs andmaximum offset of x axis,and the horizontal distance between reciprocating cutter and the nip point of gripping chains had the greatest influence as well as the angle of gripping chain had the least effect,respectively. The four factors had no significant difference in maximum offset of y axis. The interaction of factors only had significant effect on loss rate of corncobs. At the angle of gripping chain of 19. 96°,the teeth number of sprockets in enter shaft of 22. 09,the horizontal distances of 22. 33 mm as well as the working speed of corn harvester of 1. 31 m/s,the GDD showed optimal performance with loss rate of 0. 4% and maximum offset of x axis of 24 mm. Field verification test was carried out after the combination of the optimal parameters,and the results showed that the regression model had good reliability to predict the loss rate of corncobs and maximum offset of x axis. According to comparison of transplanting performance before and after parameter optimization,loss rate of corncobs was reduced by 2. 4 percentage points,which was superior to the technique indexes of national and industry standards as well. The research provided a basis on the design of gripping and delivering device of corn harvester for reaping both corn stalk and spike.
引文
1 MOURTZINIS S,CANTRELL K B,ARRIAGA F J,et al.Carbohydrate and nutrient composition of corn stover from three southeastern USA locations[J].Biomass and Bioenergy,2016,85:153-158.
    2 LIZOTTE P L,SAVOIE P,De CHAMPLAIN A.Ash content and calorific energy of corn stover components in Eastern Canada[J].Energies,2015,8(6):4827-4838.
    3 PRATTA M R,TYNERA W E,Jr.MUTH D J,et al.Synergies between cover crops and corn stover removal[J].Agricultural Systems,2014,130:67-76.
    4 VADAS P A,DIGMAN M F.Production costs of potential corn stover harvest and storage systems[J].Biomass and Bioenergy,2013,54:133-139.
    5 PORDESIMO L O,EDENS W C,SOKHANSAN J S.Distribution of aboveground biomass in corn stover[J].Biomass and Bioenergy,2004,26(4):337-343.
    6 SOKHANSANJ S,TURHOLLOW A,CUSHMAN J,et al.Engineering aspects of collecting corn stover for bioenergy[J].Biomass and Bioenergy,2002,23(5):347-355.
    7 AGUAYO M M,SARIN S C,CUNDIFF J S,et al.A corn-stover harvest scheduling problem arising in cellulosic ethanol production[J].Biomass and Bioenergy,2017,107:102-112.
    8 赵学林.穗茎兼收型玉米收获机茎秆切碎回收装置设计与研究[D].北京:中国农业机械化科学研究院,2014.ZHAO Xuelin.Design and research for the stalk chopping and recovery device of corn combine reaping both stalk and spike[D].Beijing:Chinese Academy of Agricultural Mechanization Sciences,2014.(in Chinese)
    9 张银平,刁培松,杜瑞成,等.穗茎兼收型玉米收获机茎秆切碎与输送装置设计与试验[J/OL].农业机械学报,2016,47(增刊):208-214.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=2016s032&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2016.S0.032.ZHANG Yinping,DIAO Peisong,DU Ruicheng,et al.Design and test of stalk chopping and conveying device for corn combine reaping both stalk and spike[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2016,47(Supp.):208-214 .(in Chinese)
    10 杜岳峰.丘陵山地自走式玉米收获机设计方法与试验研究[D].北京:中国农业大学,2014.DU Yuefeng.Design method and experimental research on self-propelled corn harvester for hilly and mountainous region[D].Beijing:China Agricultural University,2014.(in Chinese)
    11 张道林,孙永进,赵洪光.自走式穗茎兼收型玉米联合收获机的设计与试验[J].农业工程学报,2005,21(1):79-82.ZHANG Daolin,SUN Yongjin,ZHAO Hongguang.Design and experiment of the self-propelled combine harvester for corn and stalk[J].Transactions of the CSAE,2005,21(1):79-82.(in Chinese)
    12 张道林,孙永进,赵洪光,等.立辊式玉米摘穗与茎秆切碎装置的设计[J].农业机械学报,2005,36(7):50-52,76.ZHANG Daolin,SUN Yongjin,ZHAO Hongguang,et al.Design of avertical-roll type of corn picker and stalk chopper[J].Transactions of the Chinese Society for Agricultural Machinery,2005,36(7):50-52,76.(in Chinese)
    13 蒋韬,侯加林,李天华,等.田间玉米茎秆往复切割试验台[J/OL].农业机械学报,2013,44(增刊2):32-36.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=2013s207&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2013.S2.007.JIANG Tao,HOU Jialin,LI Tianhua,et al.Field reciprocating cutting test bench for cron stalks[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2013,44(Supp.2):32-36.(in Chinese)
    14 宋占华,宋华鲁,闫银发,等.棉花秸秆往复式切割器动刀片优化设计[J].农业工程学报,2016,32(6):42-49.SONG Zhanhua,SONG Hualu,YAN Yinfa,et al.Optimizing design on knife section of reciprocating cutter bars for harvesting cotton stalk[J].Transactions of the CSAE,2016,32(6):42-49.(in Chinese)
    15 王功亮,姜洋,李伟振,等.基于响应面法的玉米秸秆成型工艺优化[J].农业工程学报,2016,32(13):223-227.WANG Gongliang,JIANG Yang,LI Weizhen,et al.Process optimization of corn stover compression molding experiments based on response surface method[J].Transactions of the CSAE,2016,32(13):223-227.(in Chinese)
    16 张宗玲,韩增德,李树君,等.玉米穗茎兼收割台切割夹持输送装置仿真与试验[J/OL].农业机械学报,2016,47(增刊):215 -221.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=2016s033&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2016.S0.033.ZHANG Zongling,HAN Zengde,LI Shujun,et al.Simulation analysis and test on straw cutting and clamping device of corn combine respectively harvesting stalk and ears[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2016,47(Supp.):215-221.(in Chinese)
    17 谭华,胡广.HSV反求电锤冲击气动系统的设计及优化[J].机床与液压,2016,44(17):121-124.TAN Hua,HU Guang.HSV reverse design and optimization of impact system and pneumatic system of rotary hammer[J].Machine Tool&Hydraulics,2016,44(17):121-124.(in Chinese)
    18 熊宏启,王乐,孙厚广,等.高速摄影仪在大孤山露天铁矿爆破试验中的运用[J].矿业研究与开发,2015,35(9):20-23.XIONG Hongqi,WANG Le,SUN Houguang,et al.Application of hign-speed photography for blasting test in Dagushan open-pit iron mine[J].Mining R&D,2015,35(9):20-23.(in Chinese)
    19 王吉奎,郭康权,吕新民,等.改进型夹持式棉花穴播轮排种过程高速摄像分析[J].农业机械学报,2011,42(10):74-78.WANG Jikui,GUO Kangquan,LXinmin,et al.High-speed photography analysis on operating process of improved clamping dibbler for cotton[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(10):74-78.(in Chinese)
    20 马瑞峻,王凯湛,马旭,等.穴盘水稻秧苗通过分秧滑道的高速摄像分析[J].农业机械学报,2011,42(10):84-89.MA Ruijun,WANG Kaizhan,MA Xu,et al.Analysis of rice seedlings passing through separating chutes based on high speed photography[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(10):84-89.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700