一个毛竹LTR反转录转座子结构鉴定及表达模式分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification and expression pattern analysis of a Moso Bamboo LTR retrotransposon
  • 作者:潘飞翔 ; 汤定钦 ; 周明兵
  • 英文作者:Feixiang Pan;Dingqin Tang;Mingbing Zhou;State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University;Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University;
  • 关键词:LTR反转录转座子 ; 环境胁迫 ; 毛竹实生苗 ; 实时荧光定量PCR
  • 英文关键词:LTR retrotransposon;;environmental stress;;Phyllostachys edulis seedlings;;real-time fluorescent quantitative PCR
  • 中文刊名:SHWU
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:浙江农林大学省部共建亚热带森林培育国家重点实验室;浙江省竹资源与高效利用协同创新中心浙江农林大学;
  • 出版日期:2019-01-09 09:13
  • 出版单位:生物工程学报
  • 年:2019
  • 期:v.35;No.243
  • 基金:国家自然科学基金(Nos.31470615,31870656);; 浙江省自然科学基金(No.LZ19C160001)资助~~
  • 语种:中文;
  • 页:SHWU201903012
  • 页数:13
  • CN:03
  • ISSN:11-1998/Q
  • 分类号:110-122
摘要
为了在毛竹中开发更多的活性LTR反转录转座子,文中分析和鉴定了一个毛竹LTR反转录转座子(Ph-LTR2),系统分析了该转座子在逆境下的表达模式。Ph-LTR2转座子全长6 030 bp,属于Ty3-Gypsy家族中的Reina亚家族。LTR序列同源性为96.41%,插入时间约为61.92万年,在基因组中有5个拷贝。Ph-LTR2转座子结构域包括GAG (种属特异抗原,gag protein)蛋白域、PR (蛋白酶,Proteases)蛋白域、RT (反转录酶,Reverse transcriptases)蛋白域、RH (RNA酶H,Ribonuclease H)蛋白域、INT (整合酶,Integrase)蛋白域和CHR (染色质组织修饰域,Chromatin organization modifier)蛋白域。通过实时定量PCR检测了INT、RT和RH的表达模式,确定INT、RT和RH在毛竹叶、笋、根存在组织表达特异性。在高温、低温、甲基化抑制剂、辐照与高盐等胁迫下,Ph-LTR2转座子INT、RT和RH的转录水平均不同程度地提高了,具体来讲,INT、RT和RH在高温、低温、甲基化抑制剂处理后转录水平上调;在低剂量辐照处理和低浓度盐溶液处理后转录水平也上调,但随剂量和浓度的增加表达水平又下降,这些结果表明Ph-LTR2转座子的表达模式响应外界环境的变化,但具体机制尚不清楚。本研究结果为开发基于Ph-LTR2转座子标签奠定了一定的理论基础。
        To develop more active LTR retrotransposons in Phyllostachys edulis, a Ph. edulis LTR retrotransposon(Ph-LTR2) was identified, and the expression pattern of the transposon under stress was systematically analyzed. Ph-LTR2 transposon is 6 030 bp in length and belongs to the Reina subfamily in the Ty3-Gypsy family. With the similarity of 96.41% of both LTR sequences, the Ph-LTR2 transposon inserted the moso bamboo genome about 61.92 thousand years ago. There are 5 copies identified in the genome. The Ph-LTR2 transposon domain includes GAG(gag protein) protein domain, PR(Proteases)protein domain, RT(Reverse transcriptase) protein domain, RH(Ribonuclease H) protein domain, INT(Integrase) protein domain and CHR(Chromatin organization modifier) protein domain. The expression patterns of INT, RT and RH were detected by real-time quantitative PCR. The three domains were found to have specific expression patterns at different tissues of the bamboo. Under the conditions of low/high temperature, methylation inhibitors treatments, irradiation and high salt stress, transcription levels of the three domains of the Ph-LTR2 transposon increased with different degrees. Specifically, after treatment with low/high temperature and methylation inhibitors, the transcription level was up-regulated; after low dose radiation treatment and low concentration of salt solution treatment, the transcription level was also increased, but the expression level decreased with increasing dose of radiation and concentration of salt solution. These results indicate that the expression pattern of the Ph-LTR2 transposon responds to the changes of the external environment, but the exact mechanism is not yet known. The results of this study laid a certain theoretical foundation for the development of the genetic tool based on Ph-LTR2 transposons.
引文
[1]Llorens C,Futami R,Covelli L,et al.The Gypsy Database(GyDB)of mobile genetic elements:release2.0.Nucleic Acids Res,2011,39(D1):D70-D74.
    [2]Vitte C,Panaud O,Quesneville H.LTRretrotransposons in rice(Oryza sativa,L.):recent burst amplifications followed by rapid DNA loss.BMC Genomics,2007,8(1):218.
    [3]Eickbush TH,Jamburuthugoda VK.The diversity of retrotransposons and the properties of their reverse transcriptases.Virus Res,2008,134(1/2):221-234.
    [4]Liang LL,Zhou MB.Plant active LTRretrotransposons:a review.Chin J Biotech,2016,32(4):409-429(in Chinese).梁琳琳,周明兵.植物活性长末端重复序列反转录转座子研究进展.生物工程学报,2016,32(4):409-429.
    [5]Finatto T,de Oliveira AC,Chaparro C,et al.Abiotic stress and genome dynamics:specific genes and transposable elements response to iron excess in rice.Rice,2015,8(1):13.
    [6]Feng G,Leem YE,Levin HL.Transposon integration enhances expression of stress response genes.Nucleic Acids Res,2013,41(2):775-789.
    [7]Ito H,Gaubert H,Bucher E,et al.An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress.Nature,2011,472(7341):115-119.
    [8]Wang D.Heritable alterations in DNA methylation pattern and mobilization of transposon induced by laser irradiation in Jijing88[D].Changchun:Jilin Agricultural University,2011(in Chinese).王丹.激光辐射诱导水稻吉粳88号可遗传DNA甲基化变异和转座子转座激活的研究[D].长春:吉林农业大学,2011.
    [9]Takeda S,Sugimoto K,Otsuki H,et al.A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture,wounding,methyl jasmonate and fungal elicitors.Plant J,1999,18(4):383-393.
    [10]Saze H,Kakutani T.Differentiation of epigenetic modifications between transposons and genes.Curr Opin Plant Biol,2011,14(1):81-87.
    [11]Peng ZH,Lu Y,Li LB,et al.The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla).Nat Genet,2013,45(4):456-461.
    [12]Hu T,Ma YJ,Li XP,et al.Identification and evolutionary study of full-length LTR-retrotransposons in moso bamboo genome.Mol Plant Breed,2014,12(6):1265-1274(in Chinese).胡陶,马艳军,李雪平,等.毛竹全长LTR逆转座子的鉴定和进化分析.分子植物育种,2014,12(6):1265-1274.
    [13]Zhou M,Tang DQ,Zhou MB.Cloning,characterization and phylogenetic analysis of a typical long terminal repeat retrotransposon in Phyllostachys heterocycla cv.pubescens.J Bamboo Res,2014,33(3):1-10(in Chinese).周敏,汤定钦,周明兵.一个毛竹典型LTR转座子的克隆、鉴定及进化分析.竹子研究汇刊,2014,33(3):1-10.
    [14]Zhou M.Cloning,identification and analysis characteristics of LINEs and Ty3-gypsy retrotransposons from bamboo[D].Hangzhou:Zhejiang A&F University,2014(in Chinese).周敏.竹子LINEs、Ty3-gypsy类转座子的克隆、鉴定及特性分析[D].杭州:浙江农林大学,2014.
    [15]Yang Y,Huang YW,Luo SP,et al.Effects of NaCl stress on chlorophyll fluorescence and physiological characteristics of moso bamboo seedlings.J Bamboo Res,2010,29(1):29-32,35(in Chinese).杨洋,黄业伟,罗淑萍,等.NaCl胁迫对毛竹幼苗叶绿素荧光特性及生理指标的影响.竹子学报,2010,29(1):29-32,35.
    [16]Liu LL,Chen L,Zhang CY,et al.Characterization of two LEA genes and their response to abiotic stresses in wheat.Sci Agric Sin,2014,47(19):3736-3745(in Chinese).刘露露,陈雷,张春艳,等.两个小麦LEA基因的特征及其对非生物胁迫的响应.中国农业科学,2014,47(19):3736-3745.
    [17]Zhou MB,Hu BJ,Zhu YH.Genome-wide characterization and evolution analysis of long terminal repeat retroelements in moso bamboo(Phyllostachys edulis).Tree Genet Genom,2017,13(2):43.
    [18]Sanmiguel P,Gaut BS,Tikhonov A,et al.The paleontology of intergene retrotransposons of maize.Nat Genetics,1998,20(1):43-45.
    [19]Ma JX,Jackson SA.Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice.Genome Res,2006,16(2):251-259.
    [20]Qi FY,Hu T,Peng ZH,et al.Screening of reference genes used in qRT-PCR and expression analysis of PheTFL1 gene in Moso Bamboo.Acta Bot Boreal-Occident Sin,2013,33(1):48-52(in Chinese).齐飞艳,胡陶,彭镇华,等.毛竹实时荧光定量PCR内参基因的筛选及成花基因PheTFL1表达分析.西北植物学报,2013,33(1):48-52.
    [21]Ma J,Bennetzen JL.Rapid recent growth and divergence of rice nuclear genomes.Proc Natl Acad Sci USA,2004,101(34):12404-12410.
    [22]Sanmiguel PJ,Ramakrishna W,Bennetzen JL,et al.Transposable elements,genes and recombination in a215-kb contig from wheat chromosome 5Am.Funct Integr Genomics,2002,2(1/2):70-80.
    [23]Liu JS,Hao W.LTR retrotransposon landscape in Medicago truncatula:more rapid removal than in rice.BMC Genomics,2008,9(1):382.
    [24]Lippman Z,Gendrel AV,Black M,et al.Role of transposable elements in heterochromatin and epigenetic control.Nature,2004,430(6998):471-476.
    [25]Zhang XY,Yazaki J,Sundaresan A,et al.Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis.Cell,2006,126(6):1189-1201.
    [26]Willing EM,Rawat V,MandákováT,et al.Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNAmethylation.Nat Plants,2015,1(2):14023.
    [27]Miura A,Yonebayashi S,Watanabe K,et al.Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis.Nature,2001,411(6834):212-214.
    [28]Singer T,Yordan C,Martienssen RA.Robertson’s Mutator transposons in A.thaliana are regulated by the chromatin-remodeling gene Decrease in DNAMethylation(DDM1).Genes Dev,2001,15(5):591-602.
    [29]Feng S,Jacobsen SE,Reik W.Epigenetic reprogramming in plant and animal development.Science,2010,330(6004):622-627.
    [30]Slotkin RK,Vaughn M,Borges F,et al.Epigenetic reprogramming and small RNA silencing of transposable elements in polle.Cell,2009,136(3):461-472.
    [31]Tamaki S,Tsuji H,Matsumoto A,et al.FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice.Proc Natl Acad Sci USA,2015,112(8):E901-E910.
    [32]Liu QX.DNA methylation research of Oryza sativa(Nipponbare)after treated with 5-Aza-2′-deoxycytidine[D].Hangzhou:Zhejiang University,2014(in Chinese).刘秋香.DNA甲基化抑制剂5-Aza-2’-deoxycytidine处理后水稻的DNA甲基化研究[D].杭州:浙江大学,2014.
    [33]Zhou ZB.Expressive activity of retrotransposon atrl by stresses and the effect in fanchangchang jujube by phytoplasma[D].Hefei:Anhui Agricultural University,2014(in Chinese).周张彬.逆转座子atrl胁迫诱导表达活性研究及植原体对繁昌长枣的影响[D].合肥:安徽农业大学,2014.
    [34]Jiang LL.Mobilization of transposons mPing and pong and alterations in DNA methylation induced byγirradiation in rice[D].Harbin:Northeast Normal University,2008(in Chinese).姜丽丽.γ射线诱导水稻转座子mPing及Pong的激活和DNA甲基化的变异[D].哈尔滨:东北师范大学,2008.
    [35]Wang XX.Biological effects induced on moso seed by 60Coγ-irradiation[D].Hefei:Anhui Agricultural University,2010(in Chinese).王新新.60Coγ射线辐照毛竹种子的生物学诱变效应[D].合肥:安徽农业大学,2010.
    [36]Rao YC,Yang YL,Huang LC,et al.Research progress on cold stress in rice.Mol Plant Breed,2013,11(3):443-450(in Chinese).饶玉春,杨窑龙,黄李超,等.水稻耐冷胁迫的研究进展.分子植物育种,2013,11(3):443-450.
    [37]Yu XC,Xing YX,Ma H,et al.Changes of hormone in grafted and non grafted cncumber seedlings under low temperature stress.Acta Hortict Sin,1999,26(6):406-407(in Chinese).于贤昌,邢禹贤,马红,等.低温胁迫下黄瓜嫁接苗和自根苗内源激素的变化.园艺学报,1999,26(6):406-407.
    [38]Shen Man.Preliminary study on the relations between membrane permeability,endogenous hormones and cold resistance of ivy.Acta Hortict Sin,2005,32(1):141-144(in Chinese).沈漫.常春藤质膜透性和内源激素与抗寒性关系初探.园艺学报,2005,32(1):141-144.
    [39]Song Y,Cui XS,Chen JJ,et al.The profiling of eleven phytohormones in Pyropia haitanensis under different high-temperature environments.J Fish China,2017,41(10):1578-1587(in Chinese).宋悦,崔晓山,陈娟娟,等.不同高温胁迫条件下的坛紫菜中植物激素分析.水产学报,2017,41(10):1578-1587.
    [40]Feng FM,Shi SJ,Cao Y,et al.Effects of chilling and freezing stress on the physiological metabolism and the expression of cold-related transcription factors in seedlings of Phyllostachys heterocycla cv.Pubescens.J Bamboo Res,2014,33(2):29-33(in Chinese).冯芳敏,史世京,曹颖,等.冷冻胁迫对毛竹幼苗生理代谢及抗寒相关转录因子表达的影响.竹子研究汇刊,2014,33(2):29-33.
    [41]Li J,Chen K,Tang J,et al.Relationship between nitric oxide and JA accumulation in maize seedling under NaCl stress.Acta Bot Boreal-Occident Sin,2008,28(8):1629-1636(in Chinese).李杰,陈康,唐静,等.NaCl胁迫下玉米幼苗中一氧化氮与茉莉酸积累的关系.西北植物学报,2008,28(8):1629-1636.
    [42]Lu XK,Wang DL,Yin ZJ,et al.Genomic DNAmethylation polymorphism analysis of cotton under NaCl and Na2CO3 stress.Sci Agrict Sin,2014,47(16):3132-3142(in Chinese).陆许可,王德龙,阴祖军,等.NaCl和Na2CO3对不同棉花基因组的DNA甲基化影响.中国农业科学,2014,47(16):3132-3142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700