投加不同形态的铁对厌氧消化的影响和作用机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects and mechanisms of iron in different forms on anaerobic digestion
  • 作者:刘亚利 ; 钟婷婷 ; 刘鹏飞 ; 余紫薇 ; 杨灿
  • 英文作者:LIU Ya-li;ZHONG Ting-ting;LIU Peng-fei;YU Zi-wei;YANG Can;College of Civil Engineering,Nanjing Forestry University;
  • 关键词:Fe ; 厌氧消化 ; 生物利用度 ; 螯合剂
  • 英文关键词:Fe;;anaerobic digestion;;bioavailability;;chelating agents
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:南京林业大学土木工程学院;
  • 出版日期:2018-08-30 14:18
  • 出版单位:应用化工
  • 年:2018
  • 期:v.47;No.320
  • 基金:江苏省自然科学基金(BK20160937);; 江苏省大学生实践创新训练计划项目(2017NFUSPITP188);; 南京林业大学青年科技创新基金项目(CX2017025)
  • 语种:中文;
  • 页:SXHG201810051
  • 页数:4
  • CN:10
  • ISSN:61-1370/TQ
  • 分类号:226-229
摘要
厌氧消化(AD)因具有有机负荷高、能耗低、污泥产量少、可回收再生能源等优点被广泛用于有机固废、工业废水及复杂物料处理。Fe是厌氧微生物所必需的生长因子,参与多种酶的激活反应,甚至可直接参与种群间的直接电子传递。然而,过量投加Fe会对微生物产生毒害和抑制作用。研究表明,螯合剂[次氮基三乙酸(NTA)、乙二胺四乙酸(EDTA)等]可与Fe形成螯合物,有助于提高Fe的生物利用度,进而降低Fe的投加量。重点总结Fe在AD中的作用机理,以及投加不同形态的Fe对厌氧产酸产甲烷的影响,同时阐述螯合剂提高Fe的生物利用度的效能。
        Anaerobic digestion is widely used in the treatment of organic solid waste,industrial wastewater and complex materials due to its advantages of high organic load,low energy consumption,low sludge yield,and renewable energy.Fe is a necessary element for the growth of anaerobic microorganisms,participating in the activation reaction of various enzymes,and even directly direct interspecies electron transfer.However,the overdosing addition of Fe has toxic and inhibitory effects on microorganisms.The studies suggested that chelating agents,such as nitrilotriacetic acid( NTA) and ethylenediaminetetraacetic acid( EDTA),can form chelates with Fe,which is benefit for promoting the bioavailability and decreasing dosage.Therefore,the mechanisms of Fe on anaerobic digestion,and the effects of Fe in different forms on biogas production are summarized.Simultaneously,the effects of chelating agents on Fe-bioavailability are discussed.
引文
[1]曾武,郎建峰.厌氧消化过程中微量营养物的作用研究新进展[J].绿色科技,2011,10(10):215-217.
    [2] Moestedt J,Nordell E,Shakeri Yekta S,et al. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste[J]. Waste Manage,2016,47(Part A):11-20.
    [3]王素春.利用Fe(III)抑制污泥厌氧消化中硫化氢形成的研究[D].西安:西安建筑科技大学,2013.
    [4] Choong Y Y,Norli I,Abdulla A Z,et al. Impacts of trace element supplementation on the performance of anaerobic digestion process:A critical review[J]. Bioresource Technol,2016,209(6):369-379.
    [5] Bougrier C,Dognin D,Laroche C,et al. Anaerobic digestion of Brewery Spent Grains:Trace elements addition requirement[J]. Bioresource Technol, 2018, 247:1193-1196.
    [6]王菊思,赵丽辉,贾智萍,等.镍对厌氧消化的抑制作用过程研究[J].环境科学,1993,14(6):5-7.
    [7] Thanh P M,Ketheesan B,Yan Z,et al. Trace metal speciation and bioavailability in anaerobic digestion:A review[J]. Biotechnol Adv,2016,34(2):122-136.
    [8]张庆芳,张婷婷,陈吉祥,等.添加四种微量元素对餐厨垃圾和剩余污泥联合厌氧消化的影响[J].兰州理工大学学报,2017,43(4):77-81.
    [9] Shima S,Warkentin E,Thauer R K,et al. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen[J]. J Biosci Bioeng,2002,93(6):519-530.
    [10] Harrop Todd C,Mascharak Pradip K. Structural and spectroscopic models of the A-cluster of acetyl coenzyme a synthase/carbon monoxide dehydrogenase:Nature’s Monsanto acetic acid catalyst[J]. Coordin Chem Rev,2005,249(24):3007-3024.
    [11]温海东.零价铁对餐厨垃圾厌氧消化的影响[D].武汉:武汉科技大学,2016.
    [12]杨光,张光明,张盼月,等.微量元素Fe、Ni对污泥厌氧消化优化调理[J].环境工程学报,2017,11(9):4971-4977.
    [13]梅冰,谢影.产甲烷菌对厌氧消化系统稳定性能指示性分析[J].科技通报,2016,32(9):195-198.
    [14] Ferry J G. The chemical biology of methanogenesis[J].Planet Space Sci,2010,58(14/15):1775-1783.
    [15]蒋杭城,马艺鸣,刘秀红,等. Fe对污水和污泥处理过程中微生物和工艺性能的影响[J].环境工程,2016(11):1-6.
    [16] Barua S,Dhar B R. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technol,2017,244(1):698-707.
    [17] Kato S,Hashimoto K,Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Pnatl Acad Sci USA,2012,109(25):10042-10046.
    [18]钱风越. Fe3O4纳米颗粒对厌氧消化产甲烷过程的影响[D].哈尔滨:哈尔滨工业大学,2016.
    [19] Cruz Viggi C,Rossetti S,Fazi S,et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environ Sci Technol,2014,48(13):7536-7543.
    [20] Li H J,Chang J L,Liu P F,et al. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J]. Environ Microbiol,2014,17(5):1533-1547.
    [21] Ortner M,Rameder M,Rachbauer L,et al. Bioavailability of essential trace elements and their impact on anaerobic digestion of slaughterhouse waste[J]. Biochem Eng J,2015,99:107-113.
    [22]刘晓光,董滨,戴翎翎,等.剩余污泥厌氧消化过程重金属形态转化及生物有效性分析[J].农业环境科学学报,2012,31(8):1630-1638.
    [23] Gustavsson J,Svensson B H,Karlsson A. The feasibility of trace element supplementation for stable operation of wheat stillage-fed biogas tank reactors[J]. Water Sci Technol,2011,64(2):320-325.
    [24]王艳琴,张洁,赵晨曦,等.金属离子强化餐厨垃圾高温厌氧发酵产酸[J].环境工程学报,2016,10(4):2051-2056.
    [25] Cai Y F,Zhao X L,Zhao Y B,et al. Optimization of Fe2+supplement in anaerobic digestion accounting foe the Febioavailability[J]. Bioresource Technol,2018,250(2):163-170.
    [26]刘旭东,黄莹. Fe2+对厌氧发酵生物制氢的影响[J].环境科学与技术,2010(S2):162-164.
    [27]时昌波,王进,彭书传,等.三价铁离子促进玉米秸秆厌氧发酵[J].农业工程学报,2013,29(13):218-226.
    [28]杨光,张光明,张盼月,等.添加三氯化铁对中温污泥厌氧消化优化调理[J].环境工程学报,2017,11(8):4725-4731.
    [29] Meng X S,Zhang Y B,Li Q,et al. Adding Fe0powder to enhance the anaerobic conversion of propionate to acetate[J]. Biochem Eng J,2013,73:80-85.
    [30] Jia T T,Wang Z Z,Shan H Q,et al. Effect of nanoscale zero-valent iron on sludge anaerobic digestion[J]. Resour Conserv Recy,2017,127:190-195.
    [31]克选.纳米Fe强化污泥厌氧消化产甲烷的研究[J].工业安全与环保,2016,42(9):19-22.
    [32] Park J H,Kang H J,Park K H,et al. Direct interspecies electron transfer via conductive materials:A perspective for anaerobic digestion applications[J]. Bioresource Technol,2018(254):300-311.
    [33]贾通通,王在钊,耿凤华,等.纳米Fe3O4对污泥厌氧消化产沼气性能的影响[J].水污染治理技术,2017,7(2):201-208.
    [34] Vintiloiu A,Boxriker M,Lemmer A,et al. Effect of thylenediaminetetraacetic acid(EDTA)on the bioavailability of trace elements during anaerobic digestion[J]. Chem Eng J,2013,223:436-441.
    [35] Satyro S,Marotta R,Clarizia L,et al. Removal of EDDS and copper from waters by Ti O2photocatalysis under simulated UV-solar conditions[J]. Chem Eng J,2014,251:257-268.
    [36] Hu Q H,Li X F,Du G C,et al. Effect of nitrilotriacetic acid on bioavailability of nickel during methane fermentation[J]. Chem Eng J,2008,143(1/2/3):111-116.
    [37]张万里.餐厨垃圾厌氧消化特性及调控策略研究[D].大连:大连理工大学,2016.
    [38] Patidar S K,Tare V. Soluble microbial products formation and their effect on trace metal availability during anaerobic degradation of sulfate laden organics[J]. Water Sci Technol,2008,58(4):749-755.
    [39] Liu Y,Chang S,Defersha F M. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor[J]. Water Res,2015,78:133-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700