马莲河流域河水化学特征和化学风化过程分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrochemistry and Chemical Weathering Processes of Malian River Basin
  • 作者:王雨山 ; 程旭学 ; 张梦南
  • 英文作者:WANG Yushan;CHEN Xuxue;ZHANG Mengnan;Center for Hydrogeology and Environmental Geology Survey,China Geological Survey;
  • 关键词:化学风化 ; 蒸发盐 ; 正演模型 ; 马莲河流域
  • 英文关键词:chemical weathering;;evaporite;;forwardmodel;;Malian river basin
  • 中文刊名:DZDQ
  • 英文刊名:Earth and Environment
  • 机构:中国地质调查局水文地质环境地质调查中心;
  • 出版日期:2018-02-01
  • 出版单位:地球与环境
  • 年:2018
  • 期:v.46;No.321
  • 基金:中国地质调查局项目(DD20160288)
  • 语种:中文;
  • 页:DZDQ201801003
  • 页数:8
  • CN:01
  • ISSN:52-1139/P
  • 分类号:18-25
摘要
采用Gibbs图解和端元分析方法研究了马莲河水化学特征、离子来源和化学风化作用,利用质量平衡正演模型评价了各风化作用对水化学组分的贡献率。结果表明,马莲河水为高TDS咸水,阳离子以Na~+、Mg~(2+)为主,阴离子以Cl~-、SO_4~(2-)为主;沿河水流向TDS降低,水化学类型由Cl-Na型演变为HCO_3·SO_4-Na·Mg型;河水化学组分的主要形成作用为化学风化,蒸发盐主导了流域风化过程,对离子组分平均贡献率高达76.5%,硅酸盐和碳酸盐风化较弱;化学风化具空间变异,从上游到下游,硫酸盐和碳酸盐贡献率增加,岩盐贡献率降低。岩性是控制流域化学风化作用的首要因素,降雨量和径流量可能也有一定影响。
        In this study,Gibbs plots and end-member analysis methods were used to identify hydrochemistry,solute sources and chemical weathering processes of Malian river. A forward model of mass budget was established to evaluate the contribution to river water mineralization for halite,sulfate,silicate and carbonate weathering. Results show that river water in this area was brackish with high total dissolved solids and dominated by Na~+,Mg~(2+),Cl~- and SO_4~(2-). Along flow path,the total dissolved solids of river water decrease and hydrochemical type transfers from Cl-Na upstream to HCO_3·SO_4-Na·Mg downstream. Water chemistry was mainly controlled by weathering processes,in which evaporite plays a dominant role with average contribution of 76. 5%,while silicate and carbonate weathering have contributions of 10. 4% and 13. 1%,respectively. From upstream to downstream,chemical weathering processes vary spatially and the contribution decreases for halite,while increases for sulfate and carbonate. Lithology condition is the primary factor affecting chemical weathering processes and rainfall and water discharge also highlight significant impacts on water chemistry.
引文
[1]Dupre B,Depssert C,Oliva P,et al.River chemical weathering and Earth's climate[J].ComptesRendus Geoscience,2003,335(16):1141-1160.
    [2]王世杰,刘再华,倪健,等.中国南方喀斯特地区碳循环研究进展[J].地球与环境,2017,45(1):2-9.
    [3]韦刚健,谢露华,卢伟健,等.珠江水系桂平、高要和清远站河水化学组成的季节变化及对化学风化研究的意义[J].第四纪研究,2011,31(3):417-425.
    [4]Brezonik P L,Arnold W A.Water chemistry:Fifty years of change and progress[J].Environmental Science and Technology,2012,46(11):5650-5657.
    [5]陶贞,高全洲,刘昆.流域化学风化过程的碳汇能力[J].第四纪研究,2011,31(3):408-416.
    [6]王兵,李心清,袁洪林,等.西江干流河水主要离子及锶同位素地球化学组成特征[J].地球化学,2009,38(4):342-350.
    [7]罗进,安艳玲,吴起鑫,等.赤水河中下游冬季河水化学空间分布特征分析[J].地球与环境,2014,42(3):297-305.
    [8]Jiang L,Yao Z,Liu Z,et al.Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau[J].Journal of Geochemical Exploration,2015,155:76-83.
    [9]刘丛强,蒋颖魁,陶发祥,等.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J].地球化学,2008,37(4):404-414.
    [10]Chapman H,Bickle M,Thaw S H,et al.Chemical fluxes from time series sampling of the Irrawaddy and Salween Rivers,Myanmar[J].Chemical Geology,2015,401:15-27.
    [11]Gaillardet J,Dupre B,Louvat P,et al.Global silicate weathering and CO2consumption rates deduced from the chemistry of large rivers[J].Chemical Geology,1999,159(1):3-30.
    [12]Hagedorn B,Cartwright I.Climatic and lithologic controls on the temporal and spatial variability of CO2,consumption via chemical weathering:An example from the Australian Victorian Alps[J].Chemical Geology,2008,260(3):234-253.
    [13]Dalai T K,Krishnaswami S,Sarin M M.Major ion chemistry in the headwaters of the Yamuna river system:Chemical weathering,its temperature dependence and CO2consumption in the Himalaya[J].Geochimica et Cosmochimica Acta,2002,66(19):3397-3416.
    [14]Tipper E T,Bickle M J,Galy A,et al.The short term climatic sensitivity of carbonate and silicate weathering fluxes:Insight from seasonal variations in river chemistry[J].Geochimica et Cosmochimica Acta,2006,70(11):2737-2754.
    [15]Hyonjeong N,Youngsook H,Qin J H,et al.Chemical weathering in the Three Rivers region of Eastern Tibet.[J].Geochimica et Cosmochimica Acta,2009,73(7):1857-1877.
    [16]陈静生,王飞越,夏星辉.长江水质地球化学[J].地学前缘,2006,13(1):74-85.
    [17]Fan B L,Zhao Z Q,Tao F X,et al.Characteristics of carbonate,evaporite and silicate weathering in Huanghe River basin:A comparison among the upstream,midstream and downstream[J].Journal of Asian Earth Sciences,2014,96:17-26.
    [18]覃小群,蒋忠诚,张连凯,等.珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J].地质通报,2015,34(9):1749-1757.
    [19]韩贵琳,刘丛强.贵州喀斯特地区河流的研究—碳酸盐岩溶解控制的水文地球化学特征[J].地球科学进展,2005,20(4):394-406..
    [20]郭巧玲,熊新芝,姜景瑞.窟野河流域地表水-地下水的水化学特征[J].环境化学,2016,35(7):1372-1380.
    [21]李晶莹,张经.黄河流域化学风化作用与大气CO2的消耗[J].海洋地质与第四纪地质,2003,23(2):43-49.
    [22]解建仓,张建龙,朱记伟,等.马莲河苦咸水来源分析及治理方案[J].资源科学,2011,33(1):77-85.
    [23]Zhang Q,Jin Z,Zhang F,et al.Seasonal variation in river water chemistry of the middle reaches of the Yellow River and its controlling factors[J].Journal of Geochemical Exploration,2015,156:101-113.
    [24]陈洲,王兮之,李保生,等.粤北岩溶区星子河流域水化学离子特征及其时空变化分析[J].地球与环境,2014,42(2):145-156.
    [25]解晨骥,高全洲,陶贞.流域化学风化与河流水化学研究综述与展望[J].热带地理,2012,32(4):331-337.
    [26]Xiao J,Jin Z D,Wang J,et al.Hydrochemical characteristics,controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region,NW Tibetan Plateau[J].Quaternary International,2015,380(5):237-246.
    [27]付素静,贾冰,张金.马莲河地表水化学特征及污染状况分析[J].人民黄河,2011,33(4):54-55.
    [28]Gibbs R J.Mechanisms controlling world water chemistry[J].Science,1970,170:1088-1090.
    [29]解建仓,张建龙,朱记伟,等.马莲河苦咸水来源分析及治理方案[J].资源科学,2011,33(1):77-85.
    [30]Mukherjee A,Scanlon B R,Fryar A E,et al.Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton(including Central Gangetic Plain):Influence of geology and geomorphology[J].Geochimica et Cosmochimica Acta,2012,90:283-302.
    [31]谢渊,王剑,李明辉,等.鄂尔多斯盆地早白垩世岩相古地理与地下水水质和分布的关系[J].地质通报,2004,23(11):1094-1102.
    [32]师育新,戴雪荣,宋之光,等.我国不同气候带黄土中粘土矿物组合特征分析[J].沉积学报,2005,23(4):690-695.
    [33]吴卫华,郑洪波,杨杰东,等.中国河流流域化学风化和全球碳循环[J].第四纪研究,2011,31(3):397-407.
    [34]李晶莹.中国主要流域盆地的风化剥蚀作用与大气CO2的消耗及其影响因子研究[D].青岛:中国海洋大学,2003.
    [35]吕婕梅,安艳玲,吴起鑫,等.清水江流域岩石风化特征及其碳汇效应[J].环境科学,2016,37(12):4671-4679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700